Hyperglycaemia in newly diagnosed pulmonary tuberculosis patients: a cross-sectional study of the Agona District Hospital

Richard K.D. Ephraim^{1*}, Samuel K. Baah¹, Samuel A. Sakyi², Kwame O. Darkwah¹ and Albert Abaka-Yawson³

Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast. ²Department of Molecular Medicine, School of Medical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi.

³Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana. *Corresponding Author: E-mail: rephraim@ucc.edu.gh

How to cite this paper: Ephraim, ABSTRACT diagnosed pulmonary tuberculosis Agona Swedru Municipality.

Received: October 17, 2020 **Accepted:** May 10, 2021 Published: June 20, 2021

Copyright © 2021 by author(s) and Annals of Medical Laboratory Science

This work is licensed under the Creative Commons Attribution (4.0) International License (CC BY 4.0) https://creativecommons.org/

licenses/by/4.0/

R.K.D., Baah, S.K., Sakyi, S.A., Background: Diabetes mellitus is an important risk factor associated with Darkwah, K.O., and Abaka-Yawson, tuberculosis (TB). This study investigated the prevalence and determinants of A. (2021) Hyperglycaemia in newly hyperglycemia among newly diagnosed pulmonary tuberculosis patients in the

patients: a cross-sectional study of Method: A hospital-based cross-sectional study was conducted from the Agona District Hospital. Annals of December 2015 to April 2016. One hundred (100) newly diagnosed pulmonary Medical Laboratory Science 1(2): 50 - 58 tuberculosis patients at the Agona Swedru Municipal Hospital (ASMH) were enrolled for the study. Socio-demographic, clinical and anthropometric measurements were collected and fasting blood glucose (FBG) measured using standard protocols. Data was analyzed using Statistical Package for Social Sciences (SPSS) software version 20.0.

> Result: Of the 100 participants, 26% had hyperglycemia. The significant factors associated with increased risk of hyperglycemia among participants were history of diabetes mellitus (OR = 8.17, p= 0.004), severity of infection (OR = 23.64, p < 0.001) and duration of symptoms (OR= 2.63, p=0.042).

> Conclusion: Hyperglycemia was common among newly diagnosed pulmonary tuberculosis patients. History of diabetes mellitus, severity of infection, and duration of symptoms were the determinants of hyperglycemia in pulmonary tuberculosis. Regular screening of hyperglycemia is essential in the management of tuberculosis. Finally, further studies should be conducted on glucose levels among pulmonary tuberculosis patients using higher sample size to increase the understanding of the subject.

Annals of Medical Laboratory Science (2021) 1(2), 50 - 58

Keywords: Pulmonary tuberculosis; hyperglycemia; fasting blood glucose, determinants

INTRODUCTION

Pulmonary tuberculosis (PTB) is a specific infectious disease caused by Mycobacterium tuberculosis. The disease is normally chronic with cardinal symptoms like persistent cough with or without expectoration, intermittent fever, loss of appetite, weight loss, chest pain and haemoptysis (Shetty et al., 2006). PTB can lead to an infection-related hyperglycemia which may mimic diabetes mellitus (DM). The hyperglycemia associated with PTB often aggravates the glycemic

diabetes mellitus control οf patients (García-Elorriaga and Del Rey-Pineda, 2014).

Currently, both PTB and DM are of great public health importance especially in Sub-Saharan Africa due to the congregating epidemics of both communicable and non-communicable diseases (Abate and Chandalia, 2003). According to the World Health Organization (WHO), there were an estimated 8.7 million incident cases of PTB and 1.4 Annals of Medical Laboratory Science (2021) 1(2): 50 - 58 https://www.annalsmls.org

million deaths from PTB in 2011 (Elhadd *et al.*, 2007). The International Diabetes Federation (IDF) also reported that more than 371 million people all over the world had DM and 471 billion USD was spent treating diabetes mellitus in 2012 (Viswanathan *et al.*, 2012).

tuberculosis Pulmonary may lead the development of new DM cases (Del Prato et al., 2007; Dooley and Chaisson, 2009). Studies have shown a high prevalence of DM and impaired glucose tolerance, in patients with PTB (Sen et al., 2009). Impaired glucose tolerance is a significant risk factor for developing DM. In most of these cases, the impaired glucose tolerance relapses back to normal after successful treatment for PTB, however the increased risk of developing DM continues (García-Elorriaga and Del Rey-Pineda, 2014). As an infectious disease, PTB increases insulin resistance and stress-induced hyperglycemia (Ottmani et al., hyperglycemia Reactionary complements chronic infections like PTB due to the augmented pro-inflammatory state and release of counter regulatory stress hormones like epinephrine, cortisol and glucagon that are antagonistic of insulin (Webb et al., 2009). Rifampicin, a very potent anti PTB drug has also been shown to induce a transient early phase hyperglycemia owing to augmentation of intestinal glucose absorption (Kibirige et al., 2013).

Also, PTB is a known cause of pancreatitis (Niazi and Kalra, 2012) and PTB pancreatitis might reveal itself only after the development of diabetes mellitus. Even though a part of the hyperglycemia associated with PTB may be ascribed to the severe stress associated with the infection itself, the major factor in this process is hypofunction of the pancreas (Niazi and Kalra, 2012; García-Elorriaga and Del Rey-Pineda, 2014). There is dearth of data on hyperglycemia in infected PTB patients in Ghana and Africa. This study investigated the prevalence and determinants of hyperglycemia among newly diagnosed pulmonary tuberculosis patients in the Agona Swedru Municipality.

MATERIALS AND METHODS Study design/site

https://doi.org/10.51374/annalsmls.2021.1.2.0042

This hospital based cross -sectional study was conducted among newly diagnosed PTB patients who attend the Agona Swedru Municipal Hospital (ASMH) in the Central Region of Ghana. ASMH is the main referral facility in the Agona municipality and its environs and provides services in obstetrics and general medicine. It has a diabetes clinic which is scheduled twice in a week.

Study population/Eligibility criteria

We conveniently recruited 100 newly diagnosed pulmonary tuberculosis patients who visited the out-patient department of the Agona Swedru Municipal Hospital. Newly diagnosed PTB patients who attended the ASMH from December 2015 to April 2016 were included. Also, the study sealed off newly diagnosed and patients already with pulmonary tuberculosis who were on therapies (eg. metformin) and other complications (eg. Diabetes mellitus, HIV/AIDS) that affect glucose metabolism. Patients with other chronic ailments like liver disease and kidney disease were excluded.

Sample Size Determination

The sample size was determined from a Ghanaian study by Asante-Poku *et al.*, (2019) to be 9.4%. The prevalence rate from that study was used to calculate the sample size to be 131. After recruitment, 9 participants could not provide fasting samples. Also, 22 participants were excluded due to incomplete data. The final sample size was 100 as illustrated below using Fisher's sampling formula;

$$N = \frac{Z^2 P(1-P)}{D^2}$$

Where; N represents the estimated sample size

Z represents the constant for 95% confidence interval given as 1.96

P represents the prevalence of tuberculosis-diabetes co-morbidity of 9.4% obtained from a Ghanaian study

D represents the percentage margin of error taken as 5%

Annals of Medical Laboratory Science (2021) 1(2): 50 - 58 https://www.annalsmls.org

$$N = \frac{1.96^2 * 0.094 * 0.906}{0.05^2}$$

N = 131Final Sample Size = 131 - 31 = 100

Ethical consideration

The participation of the respondents who are all native Ghanaians was voluntary and written informed consent was obtained from each of them. The study was approved by the University of Cape Coast Institutional Review Board (UCCIRB). Also, consent was sought from the Department of Medical Laboratory Technology and the ASMH authorities.

Data collection

An open-ended questionnaire was designed to capture precise information regarding their socio-demographic and clinical characteristics (e.g., age, sex, occupation, duration and level of PTB infection, polydipsia, polyuria, headaches and fatigue). Height (to the nearest meter) and weight (to the nearest 0.1 kg) in light clothing were measure using a wall-mounted graduated ruler and weighing balance (Seca, Hamburg, Deutschland) respectively. The body mass index (BMI) was then calculated as the ratio of the weight (kg) to the square of the height (m²). BMI of less than 18.5, 18.5-24.9, 25-29.9, and ≥30 were classified as underweight, normal, overweight and obese respectively (Nuttall, 2015).

Sample collection and biochemical analysis

Sputum was obtained from the consented participants and PTB diagnosis was done with GeneXpert. Fasting venous blood (4 ml) was collected from participants into fluoride-oxalate tubes before administration of anti-tuberculous drugs. The tubes were centrifuged at 1500 revolutions per minute (rpm) for 15 minutes and plasma separated into test tube and stored at 2 °C to 8 °C until assayed. Fasting blood glucose (FBG) levels were estimated using the glucose oxidase/peroxidase method (Barham and Trinder, 1972). Hyperglycaemia was defined as FBG greater than or equal to 6.4 mmol/l. Polyuria was also defined as

https://doi.org/10.51374/annalsmls.2021.1.2.0042

passage of urine exceeding 3 litres a day whilst polydipsia was defined as excessive drinking of water.

Statistical analysis

Data was analyzed using Statistical Package for Social Sciences (SPSS) software version 20.0. Continuous variables were expressed as mean \pm SEM, while categorical variables were expressed as proportion. Comparison of means was done by the Independent "t" test. Pearson product moment correlation was performed to determine the relationship between variables and to identify independent factors associated with the glucose levels of the participants under investigation. Multivariate logistic regression was done to determine the risk factors in the newly-diagnosed PTB patients and P < 0.05 was interpreted as statistically significant.

RESULTS

As shown in Table 1, the mean ages of the study participants were similar (P=0.135). More males 16 (88.9%) were within the age group of 60-69 and 13 (50.0%) females in the age group 30-39 (P=0.061). Also, majority of the males 60 (71.4%) were involved in informal occupation compared to the females 24 (28.6%). The mean body mass index (BMI) participants were similar (P=0.976). Symptoms of pulmonary tuberculosis (PTB) (P=0.463), duration of symptoms (P=0.900), severity of PTB (P=0.400), and duration after diagnosis of PTB (P=0.948) were similar in the participants.

The mean fasting blood glucose (FBG) was higher in the males (5.81 ± 1.48) than the females (5.62 ± 1.02) but the difference was not significant (P=0.516). With regards to hyperglycemia, 18 (66.7%) were males whilst 9 (33.3%) were females (P> 0.05). The difference between the males and the females regarding frequency of polyuria was significant (P=0.008) (Table 2).

As shown Table 3, hyperglycemia, timing of urination, frequency of polydipsia, timing of

Table 1: Demographics and associated characteristics of newly diagnosed pulmonary tuberculosis patients

Characteristics	Male (n=69)	Female (n=31)	Total (n = 100)	P-value	
Age (years)	44.45 ± 16.04	35.42 ± 17.68	41.65 ± 17.00	0.135	
Age group n (%)				0.061	
<20	3 (50.0)	3 (50.0)	6 (6.0)		
20-29	12 (54.5)	10 (45.5)	22 (22.0)		
30-39	13 (50.0)	13 (50.0)	26 (26.0)		
40-49	10 (100)	0 (0.0)	10 (10.0		
50-59	13 (100)	0 (0.0)	13 (13.0)		
60-69	16 (88.9)	2 (11.1)	18 (18.0)		
≥ 70	2 (40.0)	3 (60.0)	5 (5.0)		
Occupation n (%)	,	,	,	0.229	
Informal	60 (71.4)	24 (28.6)	84 (84.0)		
Formal	9 (56.2)	7 (43.8)	16 (16.0)		
BMI (Kg/m2)	20.73 ± 3.78	20.71 ± 2.40	20.73 ± 3.40	0.976	
BMI n (%)				0.696	
Underweight	9 (64.3)	5 (35.7)	14 (14.0)		
Normal	55 (68.8)	25 (31.2)	80 (80.0)		
Overweight	5 (83.3)	1 (16.7)	6 (6.0)		
Symptoms of PTB n (%)	,	,	· /	0.463	
Dry cough	44 (62.0)	27 (38.0)	71 (71.0)		
Productive cough	54 (74.0)	19 (26.0)	73 (73.0)		
Cough with blood	9 (56.2)	7 (43.8)	16 (16.0)		
Shortness of breath	31 (62.0)	19 (38.0)	50 (50.0)		
Fever/night sweats	39 (65.0)	21 (35.0)	60 (60.0)		
Duration of symptoms (months		,	()	0.900	
< 5	44 (69.8)	19 (30.2)	63 (63.0)		
-10	22 (68.8)	10 (31.2)	32 (32.0)		
•10	3 (60.0)	2 (40.0)	5 (5.0)		
Severity of PTB n (%)			- ()	0.400	
Mild	36 (66.7)	18 (33.3)	54 (54.0)		
Moderate	17 (81.0)	4 (19.0)	21 (21.0)		
evere	16 (64.0)	9 (36.0)	25 (25.0)		
Duration after diagnosis of PTI	0.948				
< 5	56 (69.1)	25 (30.9)	81 (81.0)		
5-10.	10 (66.7)	5 (33.3)	15 (15.0)		
>10	3 (75.0)	1 (25.0)	4 (4.0)		

Data presented as frequency (percent). Categorical variable compared using Chi-Square Test. Parametric data compared using Student t-test; p-value <0.05 considered statistically significant. BMI = Body Mass Index, PTB = Pulmonary Tuberculosis, FBG = Fasting Blood Glucose, DOS = Duration of Symptoms, DPTB = Duration after diagnosis of PTB

polydipsia, increased significantly with increasing severity of PTB infection (P<0.001).

Table 4 shows the correlation between severity of PTB with FBG, BMI, duration of symptoms duration after diagnosis of PTB. PTB severity had a correlation with FBG (r=0.490, P<0.001), duration of symptoms (DOS) (r=0.505, P<0.001) and dura-

tion after diagnosis of pulmonary tuberculosis (DPTB) (r=0.332, P=0.001). Age had a correlation with BMI (r=0.515, P<0.001) and DOS (r=0.219, P=0.029). On the other hand, FBG had a correlation with BMI (r=0.211, P=0.035). BMI had a correlation with DPTB (r=0.201, P=0.045) while DOS also had a correlation with DPTB (r=0.395, P<0.001).

Table 2: Hyperglycemia and diabetes mellitus associated characteristics among newly diagnosed PTB patients in relation to gender

Characteristics	Male	Female	Total	p-value
FBG (mmol/L)	5.81 ± 1.48	5.62 ± 1.02	5.75 ± 1.35	0.516
FBG n (%)				0.759
≤ 6.4	51 (69.9)	22 (30.1)	73 (73.0)	
> 6.4	18 (66.7)	9 (33.3)	27 (27.0)	
Symptoms of Hyperglycemia				0.977
Headache	36 (63.2)	21 (36.8)	57 (57.0)	
Fatigue	22 (62.9)	13 (37.1)	35 (65)	
History of diabetes	, ,	` ,	, ,	0.943
Yes	7 (70.0)	3 (30.0)	10 (10.0)	
No	62 (68.9)	28 (31.1)	90 (90.0)	
<i>Polyuria</i>	, ,	, ,	•	0.748
Yes	31 (67.4)	15 (32.6)	46 (46.0)	
No	38 (70.4)	16 (29.6)	54 (54.0)	
Frequency of Polyuria (Daily)	, ,	,	` ,	0.008
< 5 times	12 (46.2)	14 (53.8)	26 (26.0)	
5-10 times	53 (75.7)	17 (24.3)	70 (70.0)	
>10 times	4 (100)	0 (0.0)	4 (4.0)	
Timing of urination	` ,	` ,	` ,	0.805
Before Cough	33 (70.2)	14 (29.8)	47 (47.0)	
After Cough	36 (67.9)	17 (32.1)	53 (53.0)	
Polydipsia	,	,	` ,	0.428
Yes	41 (66.1)	21 (33.9)	62 (62.0)	
No	28 (73.7)	10 (26.3)	38 (38.0)	
Frequency of Polydipsia (Daily)	, ,	` ,	` '	0.147
< 5 times	12 (60.0)	8 (40.0)	20 (20.0)	
5-10 times	54 (74.0)	19 (26.0)	73 (73.0)	
>10 times	3 (42.9)	4 (57.1)	7 (7.0)	
Timing of Polydipsia	` /	` /	` '	0.344
Before Cough	36 (73.5)	13 (26.5)	49 (49.0)	
After Cough	33 (64.7)	18 (35.3)	51 (51.0)	

Data presented as frequency (percent). Categorical variable compared using Chi-Square Test. Parametric data compared using Student t-test; p-value <0.05 considered statistically significant.

Table 5 summarizes the logistic regression of factors associated with hyperglycaemia. The significant factors associated with increased risk of hyperglycemia among newly diagnosed PTB patients were history of diabetes (OR = 8.17, p= 0.004), severity of infection (OR = 23.64, p < 0.001) and duration of symptoms (OR= 2.63, p= 0.042).

DISCUSSION

This study investigated the prevalence and determinants of hyperglycemia among newly diagnosed pulmonary tuberculosis patients in the

Agona Swedru Municipality. The prevalence of hyperglycaemia was 26%. Additionally, history of diabetes, severity of infection and duration of symptoms were significant determinants of hyperglycemia among our participants. The prevalence rate observed in the current study is similar to a case-control study conducted in Bangalore, South India during 2001–2003 which reported diabetes mellitus as a significant risk factor for developing pulmonary tuberculosis (PTB) (Shetty et al., 2006). The hyperglycemia recorded by Shetty et al. (2006) and this study is clearly

Table 3: Hyperglycemia and diabetes associated characteristics in relation to severity of PTB among newly diagnosed PTB patients

Severity of PTB	Mild (n=54)	Moderate (n=21)	Severe (n=25)	P value
BMI (Kg/m2)	20.28 ± 4.08	21.76 ± 2.30	20.84 ± 2.27	0.235
BMI n (%)				0.853
Underweight	9(16.7)	2 (9.5)	3 (12.0)	
Normal	42(77.8)	17 (81.0)	21 (84.0)	
Overweight	3(5.6)	2 (9.5)	1 (4.0)	
FBG (mmol/L)	5.24±1.14	$6.41 \pm 1.70*$	$6.31 \pm 0.96*$	< 0.001
FBG n (%)				< 0.001
≤ 6.4	52(96.3)	11 (52.4)	10 (40.0)	
> 6.4	2(3.7)	10 (47.6)	15 (60.0)	
Symptoms of Hyperglycemia	,	,	,	0.249
Headache	29(53.7)	12 (57.1)	16 (64.0)	
Fatigue	12(22.2)	8 (38.1)	15 (60.0)	
History of diabetes	` /	` /	,	0.057
Yes	3(5.6)	5 (23.8)	2 (8.0)	
No	51(94.4)	16 (76.2)	23 (92.0)	
Polyuria	- ()			0.254
Yes	28(51.9)	10 (47.6)	8 (32.0)	
No	26(48.1)	11 (52.4)	17 (68.0)	
Frequency of Polyuria (Daily)	,		. ()	0.551
< 5 times	12(22.2)	6 (28.6)	8 (32.0)	
5-10 times	40(74.1)	15 (71.4)	15 (60.0)	
>10 times	2(3.7)	0 (0.0)	2 (8.0)	
Timing of urination	,	,	,	0.028
Before Cough	29(53.7)	12 (57.1)	6 (24.0)	
After Cough	25(46.3)	9 (42.9)	19 (76.0)	
Polydipsia	()	,	\	0.486
Yes	32(59.3)	12 (57.1)	18 (72.0)	
No	22(40.7)	9 (42.9)	7 (28.0)	
Frequency of Polydipsia (Daily)		,	,	0.024
< 5 times	7(13.0)	8 (38.1)	5 (20.0)	
5-10 times	40(74.1)	13 (61.9)	20 (80.0)	
>10 times 7 (13.0)	7(13.0)	0 (0.0)	0 (0.0)	
Timing of Polydipsia	` /	` /	` /	0.043
Before Cough	29(53.7)	13 (61.9)	7 (28.0)	
After Cough	25(46.3)	8 (38.1)	18 (72.0)	

Data presented as frequency (percent). Categorical variable compared using Chi-Square Test. Parametric data compared using Student t-test; p-value <0.05 considered statistically significant.

supported by the study conducted by García-Elorriaga and Del Rey-Pineda (2014) who reported that the association between hyperglycemia and PTB is well documented and there is substantial evidence to support the fact that PTB is an important risk factor for hyperglycemia. Besides, Abate and Chandlia (Abate and Chandalia, 2003) reported that, PTB can induce glucose intolerance and also deteriorate glycemic control in subjects

with diabetes mellitus.

Also, a retrospective analysis of 2 years data on tuberculosis subjects from Saudi Arabia in 1998 revealed that 27% had diabetes mellitus related hyperglycemia (Elhadd *et al.*, 2007). Interestingly, Viswanathan *et al.* (2012) also established a pre-diabetes prevalence of 25.3% among PTB patients in a cross–sectional study conducted at

Table 4: Correlation analyses of severity of PTB with Blood sugar, BMI, Duration of symptoms (months) and Duration after diagnosis of PTB (Weeks)

Parameter		PTB severity	Age	FBG	BMI	DOS	DPTB
PTB severity	R	1	0.06	.490**	0.058	0.505**	0.332**
	P-value		0.554	< 0.001	0.566	< 0.001	0.001
Age	R		1	0.196	.515**	.219*	0.102
	P-value			0.05	< 0.001	0.029	0.313
FBG	R			1	.211*	0.123	0.075
	P-value				0.035	0.224	0.458
BMI	R				1	0.026	.201*
	P-value					0.795	0.045
DOS	R					1	.395**
	P-value						< 0.001
DPTB	R						1
	P-value						

Spearman's correlation co-efficient analysis

Table 5: Multivariate regression of factors associated with hyperglycemia in newly diagnosed PTB patients

Variable	OR (95% CI)	P-value	
Gender			
Male*	Reference		
Female	1.16 (0.45-2.98)	0.759	
Age (years)	1.00 (0.98-1.03)	0.735	
BMI n (%)	,		
Underweight	0.68 (0.17-2.65)	0.574	
Normal*	Reference		
Overweight	0.50 (0.06-4.48)	0.532	
History of diabetes	,		
Yes	8.17 (1.93-34.50)	0.004	
No*	Reference		
Severity of PTB			
Mild*	Reference		
Moderate	23.64 (4.53-123.28)	<0.001	
Severe	39.00 (7.69-197.71)	< 0.001	
Polyuria	,		
Yes	0.92 (0.38-2.23)	0.849	
No*	Reference		
Polydipsia			
Yes	2.73 (0.99-7.56)	0.053	
No*	Reference		
Duration of symptoms (months)			
< 5*	Reference		
5-10.	2.63 (1.04-6.69)	0.042	
>10	0.96 (0.10-9.35)	0.973	
Duration after diagnosis of PTB	,		
< 5*	Reference		
5-10.	1.34 (0.41-4.36)	0.626	
>10	-	-	

M.V. Hospital for diabetes mellitus in Tamil-Nadu India.

The males had higher prevalence of hyperglycemia and PTB infection compared to the females. Again, duration of symptoms of PTB and hyperglycemia was higher among the males than the females. Also, the males recorded higher values of duration after diagnosis of PTB as compared to their female counterparts. Moreover, it was found out that the frequency of polyuria (within 5 - 10 times daily) was higher in the males than in the females. The findings of this study is apparently supported by a work conducted by Del Prato et al. (2007) who recorded a higher prevalence of hyperglycemia among men than women diagnosed with PTB and explained that there might be an accumulative effect of other risk factors such as smoking, and alcohol consumption, which impact PTB (Del Prato et al., 2007).

The mean fasting blood glucose (FBG) also increased significantly with increasing severity of infection. This affirms the assertion made Dooley and Chaisson (2009) that infection of PTB causes insulin resistance and glucose intolerance. It can then be deduced that there is a significant association between the severities of PTB infection development of hyperglycemia. multivariate regression of factors associated with hyperglycemia in newly diagnosed PTB patients revealed that, newly-diagnosed PTB patients with a history of diabetes are 8 times at risk of developing hyperglycemia. This is in consonance with a cross sectional study conducted in Indonesia which reported that diabetes mellitus is a strong risk factor associated with PTB infection (Sen et al., 2009).

An observation from this study showed that PTB patients with moderate (++) and severe (+++) cases of infection were at 24 and 39 times at risk of developing hyperglycemia respectively. This is due to depressed cellular immunity, dysfunction of alveolar macrophages, low levels of interferon gamma, pulmonary microangiopathy, and micronutrient deficiency and the loss of cell insulin receptor signaling in accordance to the severity of infection (Webb *et al.*, 2009; Ottmani *et al.*, 2010). Our

findings cannot be generalized among the PTB population since it was a hospital-based study and not a community-based study. Identifying hyperglycaemia in the PTB population will help in reducing the risk of patients (PTB) patients progressing to diabetes mellitus as diabetes mellitus in PTB contributes to multi-drug resistance. Besides the limited sample size, the single measurement of serum glucose clearly makes it impossible to estimate the proportion of transient hyperglycemia (those that returned to euglycemia state) among the participants. Furthermore, we were unable to establish the association of hyperglycemia with PTB treatment outcomes.

CONCLUSION

The study demonstrated hyperglycemia among newly diagnosed pulmonary tuberculosis patients and the history of diabetes, severity of infection, and the duration of symptoms after diagnosis of tuberculosis before medication were its associated determinants. Fasting blood glucose estimation should be included in the routine management practices of pulmonary tuberculosis patients to ensure proper management of the infection. Further studies should also be conducted on glucose levels among pulmonary tuberculosis patients using higher sample size. This would increase the understanding on the subject.

COMPETING INTEREST

Authors declare that they have no competing interests.

ACKNOWLEDGEMENT

We thank the management of the Swedru Government Hospital for granting us permission to conduct this study. We are also grateful to the following for their support: the staff of the tuberculosis clinic, the laboratory personnel and the tuberculosis patients.

REFERENCE

Abate N. and Chandalia M. (2003) The impact of ethnicity on type 2 diabetes. *Journal of Diabetes and its Complications* 17(1), 39-58.

Asante-Poku A., Asare P., Baddoo N., Forson A., Klevor P., Otchere I. and Gagneux S.

- (2019) TB-diabetes co-morbidity in Ghana: The importance of Mycobacterium africanum infection. *PloS one* 14(2), e0211822.
- Barham D. and Trinder P. (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. *Analyst* 97(1151), 142-145.
- Del Prato S., Bianchi C. and Marchetti P. (2007) ß-cell function and anti-diabetic pharmacotherapy. *Diabetes/metabolism research* and reviews 23(7), 518-527.
- Dooley K.E. and Chaisson R.E. (2009) Tuberculosis and diabetes mellitus: convergence of two epidemics. *The Lancet infectious diseases* 9(12), 737-746.
- Elhadd T.A., Al-Amoudi A.A. and Alzahrani A.S. (2007) Epidemiology, clinical and complications profile of diabetes in Saudi Arabia: a review. *Annals of Saudi medicine* 27 (4), 241.
- García-Elorriaga G. and Del Rey-Pineda G. (2014) Type 2 diabetes mellitus as a risk factor for tuberculosis. *J Mycobac Dis* 4(144), 2161-1068.1000144.
- Kibirige D., Ssekitoleko R., Mutebi E. and Worodria W. (2013) Overt diabetes mellitus among newly diagnosed Ugandan tuberculosis patients: a cross sectional study. *BMC infectious diseases* 13(1), 122.
- Niazi A. and Kalra S. (2012) Diabetes and tuberculosis: a review of the role of optimal glycemic control. *Journal of Diabetes & Metabolic Disorders* 11(1), 28.

- Nuttall F. (2015) Body mass index: obesity, BMI, and health: a critical review. *Nutrition today* 50(3), 117.
- Ottmani S., Murray M., Jeon C., Baker M., Kapur A., Lönnroth K. and Harries A. (2010) Consultation meeting on tuberculosis and diabetes mellitus: meeting summary and recommendations [Meeting report]. The international journal of tuberculosis and lung disease 14(12), 1513-1517.
- Sen T., Joshi S.R. and Udwadia Z.F. (2009) Tuberculosis and diabetes mellitus: merging epidemics. *J Assoc Physicians India* 57(5), 399-404.
- Shetty N., Shemko M., Vaz M. and D'souza G. (2006) An epidemiological evaluation of risk factors for tuberculosis in South India: a matched case control study. *The International Journal of Tuberculosis and Lung Disease* 10(1), 80-86.
- Viswanathan V., Kumpatla S., Aravindalochanan V., Rajan R., Chinnasamy C., Srinivasan R., Selvam J.M. and Kapur A. (2012) Prevalence of diabetes and pre-diabetes and associated risk factors among tuberculosis patients in India. *PloS one* 7(7), e41367.
- Webb E., Hesseling A., Schaaf H., Gie R., Lombard C., Spitaels A., Delport S., Marais B., Donald K. and Hindmarsh P. (2009) High prevalence of Mycobacterium tuberculosis infection and disease in children and adolescents with type 1 diabetes mellitus. The International Journal of Tuberculosis and Lung Disease 13(7), 868-874.

