Validation of automated malaria parasite diagnostic machines based on first principle: A pre-requisite for acceptable results and treatment monitoring in resource limited settings

Iseimokumo Christopher Peletiri^{1,3*}, Blessing Ukamaka Osita^{1,3}, Chekwube Evelyn Okonkwor², Emmanuel John Fyaktu³

¹Medical Microbiology & Parasitology Laboratories, National Hospital, Abuja. ²Histopathology Laboratory, Department of Medical Laboratory Services, Federal Medical Centre, Yenagoa, Bayelsa State. ³Department of Medical Microbiology, Faculty of Clinical Sciences, College of Health Sciences, University of Jos, Jos, Plateau State, Nigeria *Corresponding Author: E-mail: kumochris@hotmail.com

How to cite this paper: Peletiri, ABSTRACT

limited settings, Annals of Medical Laboratory Science 2(1): 35 - 41

Received: October 11, 2021 Accepted: February 26, 2022 Published: March 30, 2022

Copyright © 2022 by author(s) and Annals of Medical Laboratory Science

This work is licensed under the Creative Commons Attribution (4.0) International License (CC BY 4.0) https://creativecommons.org/ licenses/by/4.0/

ISSN No: 2805-4024

I.C., Osita, B.U., Okonkwor, C.E. Background: Following the very recent introduction of automated malaria and Fyaktu, E.J. (2022) Validation of parasite diagnostic machines; the need to validate these high technology automated malaria parasite diagnostic machines based on the first principle protocol in malaria parasite density machines based on first principle: A determination for acceptable results and treatment monitoring cannot be pre-requisite for acceptable results over-emphasized. The aim of this review is to update Medical Laboratory and treatment monitoring in resource Scientists, Medical Laboratory Technicians, and researchers alike on the first principle in the diagnosis of malaria using Giemsa stained thick and thin blood films and to build their capacity on how to validate any automated malaria parasite diagnostic machine.

> **Methods**: The first principle protocol in malaria parasite density determination was used. With 8 µL of blood spread within 18 mm diameter of circle (thick film), the volume of blood in one thick film field (0.002 µL) is obtained; which when multiplied by a factor (500) gives 1 µL. The number of parasites seen per 100 thick film fields or average number per each thick film field multiplied by 500 gives the number of parasites / μL of blood.

> **Results**: Malaria parasites counts of 5 - 50 parasites (1+), 50 - 500 parasites (2+), 500 - 5000 parasites (3+), and (4+) > 5000 parasites / μ L of blood, and with the results obtained from the automated machine which when entered into a 2 x 2 table reveal the performance evaluation of automated machine.

> Conclusion: With several results obtained, any automated malaria diagnostic machine can be validated for its ability to detect disease (sensitivity, specificity, positive and negative predictive values). Commencement of the use of automated malaria parasites diagnostic machines in parasitology laboratory should not lead to discontinuity in the use of thick and thin blood films in malaria diagnosis as it remains the gold standard in resource limited settings. Annals of Medical Laboratory Science (2022) 2(1), 35 - 41

Keywords: Validation, automated, malaria, diagnostic machines, first principle

INTRODUCTION

Automation as an emerging trend in modern clinical laboratories impacts positively on service delivery to patients and on staff safety / protection (Archetti et al., 2017); with automation of tests procedures which began more than 50 years ago (Hawker et al., 2017). While automation in clinical chemistry and haematology has moved steadily and in tune with laboratory advancement drives, medical microbiology and parasitology laboratories have not benefitted much from these high technology protocols (Somagen, 2015).

Therefore, the very recent introduction of automated malaria parasite diagnostic machines to parasitology laboratory is a welcome

development. However, there is the need to validate these high technology machines based on first principle in order that results emanating would be acceptable based on our understanding of the production capacity of the machine and so rely on such results for diagnosis and treatment monitoring.

order to ensure effectiveness amongst practitioners and to also retain competence, it is necessary that good supervision and regular re-training takes place. Operational fatigue is also a limiting factor and it has been suggested that the examination of 50 thick films daily should be the absolute maximum for any microscopists, and that no more than 20 films should be examined without a break for at least 30 minutes of non-microscope activity (Hommel, 2002). In actual practice, about 30 blood films should be examined because both the thick and thin films are viewed for each patient. Standard practice requires that the thick film should be examined for at least 5 minutes (corresponding to approximately 100 microscopic fields under oil immersion). Meanwhile, the standard duration of examination of the thick film has been extended to 200 oil immersion fields by some authorities for at least 10 minutes before a negative result is being released (or issued out), as this may allow for the detection of very low parasitaemia, which would not be seen on the examination of 100 fields (Paniker and Ghosh, 2013; UKNEQAS Parasitology, 1986).

The aim of this review is to update Medical Laboratory Scientists (MLS) and certified Medical Laboratory Technicians (MLT) and researchers alike on the first (1st) principle in the diagnosis of malaria using Giemsa stained thick blood films; build the capacity of MLS and certified MLT on their ability to carry out (perform) malaria parasites count with Giemsa stained thick blood films; and to build capacity of MLS and researchers on how to validate any automated malaria parasite diagnostic machine.

MATERIALS AND METHODS

The preparation and staining of thick and thin blood films as reported by Peletiri and Ibecheozor (2013); while the First (1st) principle on malaria parasite quantification protocol was used. The first

principle on malaria parasite quantification (parasite count) states that "When a measured volume of blood (e.g., $8 \mu L$) is spread within a defined diameter of the circle (thick film) (e.g., 18mm) under a magnification of 1000 (100x objective), the volume of blood in one thick film field $(0.002 \mu L)$ is obtained; and with the number of parasites seen per $100 \text{ fields or average number per each field which when multiplied by a factor (500) will give malaria parasites quantification (count) per microlitre of blood" (Peletiri, 2021). We simply modified the proposal by Greenwood and Armstrong (1991) to deduce the statement of this first principle.$

Parasites are counted by estimating the parasite numbers / μL of blood from the thick film as reported by Peletiri and Ibecheozor, (2013). The factor of 500 was proposed by Greenwood and Armstrong (1991); they had calculated that 5 – 8 μL is the volume of blood required to make a satisfactory thick film and that the volume of blood in one thick film field (100x objective) of a well-prepared thick film is about 0.002 μL. To verify their proposal and arrival of 0.002 μL as stated, Peletiri *et al.*, (2021) in their original article shared how they investigated and verified the proposal by Greenwood and Armstrong. For ease of access, we repeat it here as such:

Calculation of the diameter of the circle of thick blood film required will be equal to the diameter of field of view (dFOV, 0.178 mm) (Armstrong, 2012) multiplied by 100 fields (Cheesbrough, 2000; WHO, 2010). Therefore, dFOV multiplied by 100 fields = 0.178mm x 100 = 17.8mm = 18mm.

Estimation of volume of blood in one thick film field (100x objective). The volume of blood in one thick film (100x objective) of a well-prepared thick film will be equal to the diameter of the circle of thick blood film divided by the volume of blood used and further divided by the magnification.

Diameter of the circle of thick blood film = 18mm; Volume of blood used = $8 \mu L$; Magnification of 100x objective = 1000 Formula: Diameter of the circle of thick blood film/volume of blood used/magnification = 18/8/1000;

= 2.25/1000;

= 0.00225;

 $= 0.002 \, \mu L$

With this outcome, we can create a table (Table 1) for the required diameter of the circle of thick blood film prepared from other volumes of blood used (e.g., 5, 6 & 7 μ L). However, it should be noted that only with the use of 8 μ L spread within 18 mm thick film ensures coverage of 100 fields.

Malaria parasites counts are measured as per microlitre (1 µL) of blood. Therefore, to convert 0.002 µL to one microlitre (1 µL) is simply by dividing 1 µL with 0.002 µL, which gives 500. Therefore, the number of parasites seen and counted per 100 thick films or the average number per thick film field multiplied by 500 gives the number of parasites / µL of blood. Greenwood and Armstrong (1991) found the use of 500 as a factor to be more accurate and quicker than counting the parasites against 100 white blood cells in a thick film using the WHO method as was used by Molineaux et al., (1980), and Greenwood and Armstrong (1991) or against 200 or 500 WBCs and multiply by 800 as a factor (WHO, 2010). The counting of malaria parasites with Giemsa-stained thick blood film and reporting system should be done as reported by Peletiri et al., (2021) in their original article on "Paradigm shift in malaria parasite density determination to First principle protocol".

RESULTS

There is the need to update our reporting format to meet requirement for personalized medical care (individual patient care) as reported by Peletiri *et al.*, (2021).

Validation of Automated Malaria Parasite diagnostic machines

The validation of automated malaria parasite diagnostic machines would involve the following steps; proper study of the manufacturer's instruction manual insert; performance evaluation; and verification of manufacturer's performance claims. Prior to testing patients' samples, it is important to evaluate the performance of new equipment to ensure it is working correctly with respect to accuracy and precision (WHO, 2011). Also, laboratory instruments need to be evaluated for the ability to detect disease (sensitivity, specificity, positive and negative predictive values) and to determine normal or reportable ranges (WHO, 2011). Therefore, with the accurate manual parasite count values obtained, the process of performance evaluation (sensitivity, specificity, positive and negative predictive values) can then proceed.

Sensitivity and specificity: These are two important measures of test function used to report the performance of diagnostic tests when the true disease state is known (Katz et al., 2014). Sensitivity refers to the ability of a test to detect a disease when present; while specificity refers to the ability of a test to indicate nondisease when no disease is present (Katz et al., 2014). To calculate these measures, the data concerning the subjects studied and the test results can be put in a 2 x 2 table (Table 2).

Predictive values: Sensitivity and specificity are helpful but do not directly answer two important clinical questions: 1) If a patient's test is positive, what is the probability that the person has the

Table 1: Volume of blood used and required diameter of thick film to get $0.002~\mu L$ per volume of blood in one thick blood

Volume of blood (μl)	Diameter of thick blood film (mm)	Value of (b/a)	Volume of blood in one thick film field = Value (c)/magnification of 100X objective (1000) = (μl)
a	b	С	
5	12	12/5 = 2.4	2.40/1000 = 0.002
6	14	14/6 = 2.33	2.33/1000 = 0.002
7	16	16/7 = 2.28	2.28/1000 = 0.002
8	18	18/8 = 2.25	2.25/1000 = 0.002

Annals of Medical Laboratory Science (2022) **2**(1): 35 - 41 *https://www.annalsmls.org*

Table 2: Performance evaluation 2 x 2 table

Test Results	Automated Machine		
(thick film)	Positive	Negative	Total
Positive	a	b	a + b
Negative	c	d	c + d
Total	a + c	b + d	a + b + c + d

Formulas:

a / (a + c) = Sensitivity

d / (b + d) = Specificity

b / (b + d) = False-positive error rate (alpha error rate, type I error rate)

c / (a + c) = False-negative error rate (beta error rate, type II error rate)

a / (a + b) = Positive predictive value (PPV)

d / (c + d) = Negative predictive value (NPV) (Katz et al., 2014).

disease under investigation? 2) If the result is negative, what is the probability that the person does not have the disease? These questions, which are influenced by sensitivity, specificity, and prevalence, can be answered by doing a horizontal analysis, rather than a vertical analysis. Predictive values can either be positive or negative. Positive predictive value (PPV) is the proportion of subjects with positive test results who actually have the disease; while negative predictive value (NPV) is the proportion of subjects with negative test results who are truly free of the disease (Katz et al., 2014).

Verification of Manufacturer's performance claims:

Medical laboratory directors need to ensure they verify the manufacturer's claims, and demonstrate they can get the same results using the kits or equipment in their laboratory, with their personnel. Investigate the machine to either rule-in or rule-out the manufacture's claims as to what the machine can actually do; by carrying out the actual validation protocol while utilizing the formula below to determine sample size for validation.

Determination of Sample Size for Validation:

The sample size for validation can be determined using the formula developed by Cochran (1977) to calculate representative sample for proportion as:

$$n_0 = \underline{z^2pq}$$
 e^2

https://doi.org/10.51374/annalsmls.2022.2.1.0056

Where, n_0 – is the sample size; z – is the selected critical value of desired confidence level at 95 % (standard value of 1.96), representing a level (likelihood) of error of 5 %; p – is the estimated proportion of an attribute that is present in the population (estimated prevalence of malaria in the study area: 32.9 % = 0.329, Peletiri & Ibecheozor, 2013, Abuja, Nigeria); q – is (1 - p); e – is the desired level of precision (margin of error at 5 %; standard value of 0.05).

Therefore:
$$n_o = \underbrace{z^2pq}_{e^2}$$

$$= \underbrace{z^2p (1-p)}_{e^2}$$

$$= \underbrace{(1.96)^2 \times 0.329 (1 - 0.329)}_{(0.05)^2}$$

$$n_o = 339.24$$

Therefore, 340 samples can be used for validation of any automated malaria parasite diagnostic machine. This 340 should include all categories of results obtainable with thick blood films (Negative, 1+(5-50 parasites), 2+(50-500 parasites), 3+(500-5000 parasites), and 4+(>5000 parasites); each result category will be 68 samples each.

For example, sample for use in the validation protocol should be as such:

Negative Samples - Sixty-eight different samples; $1+(5-50 \text{ parasites }/\text{ }\mu\text{L of blood})$ - 68 different samples

Samples
$$\begin{array}{c} 1-10\text{: }5-9\text{ parasites }/\text{ }\mu\text{L of blood} \\ 11-20\text{: }10-14\text{ parasites }/\text{ }\mu\text{L of blood} \\ 21-30\text{: }15-19\text{ parasites }/\text{ }\mu\text{L of blood} \\ 31-40\text{: }20-29\text{ parasites }/\text{ }\mu\text{L of blood} \\ 41-50\text{: }30-39\text{ parasites }/\text{ }\mu\text{L of blood} \\ 51-60\text{: }40-44\text{ parasites }/\text{ }\mu\text{L of blood} \\ 61-68\text{: }45-50\text{ parasites }/\text{ }\mu\text{L of blood} \\ \end{array}$$

Also for 2+ $(50-500 \text{ parasites} / \mu\text{L of blood})$ - 68 different samples; 3+ $(500-5000 \text{ parasites} / \mu\text{L of blood})$ - 68 different samples; and 4+ $(>5000 \text{ parasites} / \mu\text{L of blood})$ - 68 different samples.

DISCUSSION

The importance of validation in quality control measures cannot be overemphasized. Validation is the act or process of making valid; producing the desired result; verifiably correct as claimed by the manufacturer in this context. Literature search revealed pronounced diversity and in some cases usage of wrong techniques for assessing the sensitivity of microscopy thick blood films. In 2007, Mens *et al.*, reported the sensitivity or lower limit of detection by microscopy of thick blood film as 5 – 10 parasites / µL of blood. In 2013, Peletiri and Ibecheozor reported the sensitivity or lower limit of detection by microscopy of thick blood film as 5 parasites / µL of blood. Both Mens *et al.*, (2007) and Peletiri & Ibecheaozor (2013) followed the first principle protocol in their methodology.

However, Eshel et al., (2013) reported 300 parasites / µL of blood as lower limit of detection by microscopy. In this particular study, parasite count was done with thin blood films. In 2017, Mukry et al., reported 386 parasites / µL of blood. Milne and co-authors used thin blood films in their study in 1994 and reported 500 parasites / µL of blood as lower limit of detection with the microscope. Though, we prepare both thick and thin blood films on the same slide for diagnosing malaria infection; the thick film provides the sensitivity (it is more than 15 times sensitive than the thin film), whereas the thin film provides the specificity and confirming which species of Plasmodium is involved (Hommel, 2002). In her submission, Cheesbrough, (2000) stated that a thick film is about 30 times more sensitive than a thin film.

In examining thick film, WHO, (2010) stated that, Giemsa microscopy is extremely sensitive, and that an experienced examiner can detect malaria parasites at densities of 5-10 per microlitre of blood. This is a statement of fact! As stated above, researchers that used thick blood films in their studies (Mens *et al.*, 2007; Peletiri and Ibecheozor, 2013) reported 5 – 10 parasites / μL of blood as the lower limit of detection; as against the 300 – 500 parasites / μL of blood lower limit of detection reported by those that used thin blood films in their studies (Eshel *et al.*, 2013; Milne *et al.*, 1994; Mukry *et al.*, 2017).

In order to actualize the desire for accurate diagnosis of malaria parasite infection and treatment

monitoring in resource limited settings; we recommend the following: 1) The use of automatic pipette to deliver the appropriate (desired) volume (e. g., 8 µL of blood) in the preparation of thick blood films with the corresponding diameter of the circle of thick film (18 mm) (Peletiri et al., 2021). 2) Regular training and re-training of Medical Laboratory Scientists and certified Medical Laboratory Technicians to retain competence. 3) Commencement of malaria parasite density determination (parasite count) nation-wide for personalized diagnosis and effective treatment monitoring using 'First principle the protocol' (Peletiri et al., 2021). 4) With the availability of funds, institutions can key into the diagnostic world of automation in parasitology laboratory – a welcome development. 5) Appropriate sample size based on malaria prevalence rate in your locality should be calculated and used for the validation of automated malaria diagnostic machines; 340 is the required sample size in our environment. 6) Finally, as you commence automation in your parasitology laboratory, we advise that the manual thick and thin blood film method should be done in parallel until such a time when you would have been satisfied with your own assessment of the capacity of the automated machine. Don't forget, one may run out of reagents used for the automated machine, therefore, the use of thick and thin blood films in malaria diagnosis should never be discontinued with; for it remains the gold standard in resource limited settings.

CONCLUSION

The volume of blood used and the size of thick blood film prepared for diagnosing malaria parasites is of utmost importance in the validation process of any automated malaria parasite diagnostic machine based on the first principle protocol. Therefore, following the sequence of activities judiciously, a well-trained trained Medical Laboratory Scientist, certified Medical Laboratory Technician or researcher will have developed the capacity to report the sensitivity of thick blood films as five (5) parasites / μ L of blood. With this capacity being built up, the eventual validation of

Annals of Medical Laboratory Science (2022) **2**(1): 35 - 41 *https://www.annalsmls.org*

any automated malaria parasite diagnostic machine can be effectively and efficiently carried out.

COMPETING INTEREST

Authors declare that they have no competing interests.

ACKNOWLEDGEMENTS

We wish to appreciate Mr. N. K. O. Ibecheozor (M. Sc; FMLSCN), retired Assistant Director, Medical Microbiology & Parasitology Laboratories, National Hospital, Abuja for his leadership role in directing our activities in the initial work on malaria research at National Hospital, Abuja, Nigeria. We equally wish to acknowledge Dr. J. O. Ajobiewe (PhD; FMLSCN; FWAPCMLS), Deputy Director, Medical Microbiology & Parasitology Laboratories, National Hospital, Abuja, Nigeria for his understanding and support during the presentation of this manuscript at the department. We extend our profound acknowledgement to all other Medical Laboratory Scientists that were present during the departmental presentation for their questions, criticisms, comments and issues raised; we say a big thank you to all.

REFERENCES

- Archetti, C., Montanelli, A., Finazzi, D., Caimi, L., and Garrafa, E. (2017). Clinical Laboratory Automation: A Case Study. *Journal of Public Health Research*, 6(1): 881.
- Armstrong, W. P. (2012). Diameter of the field of view. In W. P. Armstrong (Ed.) *Physical Properties and Structure of Cells*. Available @ w w w 2 . p a l o m a r . e d u / u s e r s / warmstrong/1mexer1.htm.
- Cheesbrough, M. (2000). Counting parasite numbers: Detecting and identifying malaria parasites in blood films. In M. Cheesbrough (Ed.) pp. 207-212. District laboratory practice in tropical countries, part 2.
- Cochran, W. G. (1977). Calculation of sample size when population is infinite sampling proportions and percentages. In W. G. Cochran (author) (pp. 50 53), *Sampling Techniques*. Third Edition. John Wiley & Sons, Inc. New York, 1977.
- Eshel, Y., Houri-Yafin, A., Benkuzari, H., Lezmy,

https://doi.org/10.51374/annalsmls.2022.2.1.0056

- N., Soni, M., Charles, M., (...), Salpeter, S. J. (2017). Evaluation of the Parasight Platform for Malaria Diagnosis. *Journal of Clinical Microbiology*, 55: 768 775.
- Greenwood, B. M., and Armstrong, J. R. M. (1991).

 Comparison of Two Simple Methods for Determining Malaria Parasite Density.

 Transactions of the Royal Society of Tropical Medicine and Hygiene, 85: 186 188.
- Hawker, C. D., Genzen, J. R., and Wittwer, C. T. (2017). Automation in the Clinical Laboratory. In N. Rifai, A. R. Norvath, C. T. Wittwer (Eds.) pp 370.el e24, *Tietz Textbook of Clinical Chemistry and Molecular Diagnostics*. Edition 6, Chapter 26, Publisher: Elsevier.
- Hommel, M. (2002). Diagnostic methods in malaria. In D. A. Warrell and H. M. Gilles (Eds) p.35, *Essential Malariology*. Fourth edition. Oxford University Press Inc.
- Katz, D. L., Elmore, J. G., Wild, D. M. G., and Lucan, S. C. (2014). Methods of primary prevention: Health promotion. In D. L. Katz, J. G. Elmore, D. M. G. Wild, & S. C. Lucan (Eds.) (pp. 81 90), Jekel's Epidemiology, Biostatistics, Preventive Medicine, and Public Health. Fourth Edition. Elsevier, Philadelphia.
- Mens, P., Spieker, N., Omar, S., Heijnen, M., Schallig, H., and Kager, P. A. (2007). "Is Molecular Biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular test in Rural Kenya and Urban Tanzania". Tropical Medicine and International Health, 12: 238 244.
- Milne, I. M., Kyi, M. S., Chiodini, P., and Warhurst, D. C. (1994). Accuracy of Routine Laboratory Diagnosis of Malaria in the United Kingdom. *Journal of Clinical Pathology*, 47: 740 742.
- Molineaux, L., Gramiccia, G., and World Health Organization (1980). The Garki project: Research on the epidemiology and control of malaria in the Sudan savanna of

- West Africa. World Health Organization, 1980. http://www.rbm.who.int.
- Mukry, S. N., Saud, M., Sufaida, G., Shaidkh, K., Naz, A., and Shamsi, T. S. (2017). Laboratory Diagnosis of Malaria: Comparison of Manual and Automated Diagnostic Tests. Canadian Journal of Infectious Diseases and Medical Microbiology, 2017: 9286392.
- Paniker, J. C. K., and Ghosh, S. (2013). Laboratory diagnosis: Demonstration of parasite by microscopy. In S. Ghosh (Ed.) pp. 63
 87, *Malaria and Babesia; Paniker's Textbook of Medical Parasitology*. Publisher: Jaypee Brothers Medical Publishers (Seventh Edition).
- Peletiri, I. C. (2021). Malaria diagnosis: The differential applicability of microscopy and malaria antigen test (Rapid Diagnostic Test). A guest lecture delivered at the 3rd Annual Scientific Conference organized by the Association of Medical Laboratory Scientists of Nigeria, FCT Branch, August, 2021.
- Peletiri, I. C., and Ibecheozor, N. K. O. (2013). Malaria Status amongst Some Patients at an Elite Hospital in Abuja, Nigeria. *International Journal of Malaria Research and* Reviews, 1: 12 – 21.

- Peletiri, I. C., Osita, B. U., Nwoke, N. A., David, J. S., and Ikeh, E. I. (2021). Paradigm shift in malaria parasite density determination to first principle protocol. *International Journal of Medical Research & Health Sciences*, 10(9): 141-149.
- SomagenTM Diagnostics (2015). Automation in Microbiology. *Somagen Quarterly*, 17: 2.
- UK National External Quality Assessment Scheme (UKNEQAS) Parasitology (1986).Examination of Thick Blood films for Parasites. PHE National Malaria Parasitology Reference Laboratory, Hospital for Tropical Disease, 3rd Floor Mortimer Market, Centre Capper Street, London WC1E 6JB. Available @ uknegasmicro.org.uk.
- World Health Organization (2010). Routine examination of blood films for malaria parasites. In WHO Basic Malaria Microscopy, Part 1. Learners Guide, 69-75
- World Health Organization (2011). Equipment.
 In: Laboratory Quality Management
 System Handbook. Chapter 3, pg 35 –
 48. WHO Library Cataloguing in –
 Publication Data. (NLM Classification:
 QY 25) Version 1.1. Available @
 www.who.int.

