Prevalence of Hepatitis B, C and HIV infections among haemodialysis patients at the Cape Coast Teaching Hospital, Ghana; A retrospective study

Richard K.D Ephraim*1, Richard T. Addo1, Yaw A. Awuku2, Hope Agbodjakey1, Prince Adoba¹, Perditer Okyere³, Sarah V. Bachelle¹, Albert Abaka-Yawson⁴, Justice Afrifa¹

Department of Medical Laboratory Science, School of Allied Health Sciences; 2Department of Medicine and Therapeutics, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, ³Renal Unit / Department of Internal Medicine, School of Medicine and Dentistry, College of Health and Allied Sciences, Kwame Nkrumah University of science and Technology, Kumasi, 4Department of Medial Laboratory Science, University of Health and Allied Sciences, Ho, Ghana *Corresponding Author: E-mail: rephraim@ucc.edu.gh

How to cite this paper: Ephraim, ABSTRACT Cape Coast Teaching Hospital, (CCTH). of Medical 42 - 51

Received: August 13, 2021 Accepted: February 27, 2022 Published: March 30, 2022

Copyright © 2022 by author(s) and Annals of Medical Laboratory Science

Creative Commons Attribution (4.0) International License (CC BY 4.0) https://creativecommons.org/

licenses/by/4.0/

ISSN No: 2805-4024

R.K.D., Addo, R.T., Awuku, Y. A., Background: End stage renal disease (ESRD) patients undergoing Agbodjakey, H., Adoba, P., Okyere, hemodialysis could be at a higher risk of acquiring viral infections such as P., Bachelle, S.V., Abaka-Yawson, A., hepatitis B, C (HBV, HCV) and human immunodeficiency virus (HIV). The and Afrifa, J. (2022) Prevalence of study investigated the prevalence of HBV, HCV, HIV and identified the Hepatitis B, C and HIV infections determinants of these viral infections among end stage renal disease (ESRD) among haemodia-lysis patients at the patients undergoing hemodialysis at the Cape Coast Teaching Hospital

Ghana; A retrospective study, Annals Methods: This retrospective hospital-based record review was conducted at the Laboratory Science 2(1): CCTH among 89 patients who underwent hemodialysis in at the renal unit of the hospital. The viral infection histories of all the recruited patients were collected as well as clinical and demographic data to identify the determinants of these infections.

Results: Of the 89 patients comprising of 59 (66.3%) males and 30 (33.7%) females, 11(12.4%) were found to be positive for hepatitis B surface antigen (HBsAg), and 6 (6.7%) were found to be positive for HCV infection. Five (5.6%) patients were positive for HIV and 5 (5.6%) participants had coinfection of HBV and HCV. No co-infection of the three viral infections was reported among the participants. Of the various parameters assessed, only average monthly dialysis sessions varied significantly by gender. Univariate This work is licensed under the logistics regression analysis indicated that HCV [OR=64.17; 95% CI (6.42-641.41) p<0.001] and HBV [OR=35.45; 95% CI (3.78-332.35) p=0.002] infection was a significant independent risk factor of acquiring HBV and HCV infection respectively. The commonest causes of ESRD among participants were hypertension (54.5%) and chronic glomerulonephritis (27.3%).

Conclusion: Prevalence rates of the three viral infections studied were high. The likelihood of getting infected with one viral agent as a result of an already existing viral agent was significant. There is therefore an urgent need for the intensification of health education on the occurrence so as to help curb a possible escalation of the viral infection in the general population.

Annals of Medical Laboratory Science (2022) 2(1), 42 - 51

Keywords: End stage renal disease, viral infections, hemodialysis, co-infection

INTRODUCTION

Viral infection is an important cause of morbidity and mortality among end stage renal disease (ESRD) patients who are undergoing haemodialysis as a form of renal replacement therapy (Saha & Agarwal, 2001). End stage renal disease (ESRD) patients undergoing haemodialysis are found to be at a higher risk of acquiring viral infections such as hepatitis B (HBV), hepatitis C (HCV) and human immunodeficiency virus (HIV) (Malhorta *et al* 2016). These viral infections also present challenges in the management of ESRD patients as they predispose both patients and health workers to the risk of acquiring an infection.

The development of co-infection of HBV and HCV is common due to the similarities in their mode of transmission (Liu & Hou, 2006). Patients with a co-infection of HBV and HCV develop severe clinical presentations and an infrequent response to interferon alpha treatment (Sagnelli et al., 2002). Frequent and multiple exposure to blood, blood products and prolonged vascular exposure puts patients at a further risk of acquiring these infections (Alashek *et al.*, 2012).

ESRD patients have been found to be at higher risk of HBV and HCV infection than the general population due to exposure to contaminated dialysis parts and also the frequent blood transfusions that ESRD patients require (Alashek et al., 2012). HBV and HCV infections among patients on dialysis means extra health complications for the already burdened individual due to their immunocompromised state. These infections are of great concern to the welfare of ESRD due to the damage they cause to the liver in the form of cirrhosis and hepatocellular carcinoma (Kim et al., 2016). Despite these risks, and in spite of the increasing dialysis centres in Ghana there is no study accessing the prevalence of HBV and HCV among haemodialysis patients. Also, all the studies reviewed in the sub-region considered only viral hepatitis B and C or HIV and not the co-infection between the three. Consequently, we sought to determine the prevalence of viral hepatitis (HBV and HCV) and HIV, as well as the various determinants of viral infections among ESRD patients undergoing haemodialysis.

MATERIALS AND METHODS Study Design/Study Area

This retrospective hospital-based study was conducted from January to June 2018 at Cape Coast

Teaching Hospital (CCTH). Cape Coast is the capital of the Central Region and has a population of 169,894 according to the 2010 census. Majority of people in Cape Coast are professionals, students, traders and fisherfolks. The Cape Coast Teaching Hospital is the largest hospital in the region and the only one with a dialysis centre. The dialysis centre has the second greatest population of dialysis patients in Ghana with a total of 68 patients as of December 2016 (Tannor *et al.*, 2018). The study population was individuals suffering from end stage renal disease who underwent haemodialysis at the CCTH for at least, the past three (3) years (2015-2018).

Selection of Participants/ Eligibility Criteria

The study involved analysis of already existing data of 90 ESRD patients who underwent haemodialysis at CCTH during the past three years (2015-2018). Selection of the participants was non-randomized. All ESRD patients who underwent dialysis at CCTH during the years under review were eligible for the study. There was no exclusion criteria in this study.

Ethical Considerations

The study was approved by the Ethical Review Committee of the Cape Coast Teaching Hospital (CCTHERC/EC/2018/13). The approval letter was sent to the appropriate officials at the Renal Centre for further approval and clearance. Confidentiality was ensured by using initials and batch numbers in representing participants instead of names. Due to the highly sensitive nature of the data collected, care was taken to protect the database at all times.

Data Collection Basic Demographic Characteristics

The study made use of secondary data. Demographic characteristics such as age, gender, occupation and geographical location were collected from the entry records at the dialysis centre for each participant included in the study. A spreadsheet protocol from Microsoft Office Excel was created to aid in the collection of these data. Some additional information was obtained orally

from the nurses and staff at the dialysis centre.

Collection of clinical data

Clinical data was obtained from the patients' records (folder) issued by the hospital for each patient coming for dialysis upon admission to the hospital.

The clinical data sought after in this study was primarily the viral infection history of each participant. These include history of hepatitis B surface antigen testing (HBsAg), anti-hepatitis C virus antibodies (anti-HCV) and human immuno-deficiency virus (HIV). Patients at the dialysis centre

Table 1: General characteristics of study participants

Variable	Total, $n = 89$	Male, $n = 59$	Female, $n = 30$	p-value
Age				
<20	2 (2.2)	0 (0.0)	2 (100.0)	0.266
20-39	33 (37.1)	22 (66.7)	11 (33.3)	
40-59	45 (50.6)	30 (66.7)	15 (33.3)	
≥60	9 (10.1)	7 (77.8)	2 (22.2)	
Occupation	` ,	` ,	,	
Unemployed	12 (13.5)	7 (58.3)	5 (41.7)	0.185
Formal	10 (11.2)	9 (90.0)	1 (10.0)	
Informal	47 (52.8)	27 (57.4)	20 (42.6)	
Retired	8 (9.0)	7 (87.5)	1 (12.5)	
Students	12 (13.5)	9 (75.0)	3 (25.0)	
Marital Status	, ,	` ,	,	
Single	23 (25.8)	15 (65.2)	8 (34.8)	0.081
Married	61 (68.5)	42 (68.9)	19 (31.1)	
Divorced	2 (2.2)	2 (100.0)	0 (0.0)	
Widowed	3 (3.4)	0 (0.0)	3 (100.0)	
Hepatitis B Virus (H	IBV)	,	,	
Negative	78 (87.6)	50 (64.1)	28 (35.9)	0.322
Positive	11 (12.4)	9 (81.8)	2 (18.2)	
Hepatitis C Virus (H		,	,	
Negative	83 (93.3)	53 (63.9)	30 (36.1)	0.093
Positive	6 (6.7)	6 (100.0)	0 (0.0)	
HIV/AIDS	` ,	,	,	
Non-Reactive	84 (94.4)	54 (64.3)	30 (35.7)	0.163
Reactive	5 (5.6)	5 (100.0)	0 (0.0)	
History of transfusio	on	` ,	,	
Yes	56 (62.9)	39 (69.6)	17 (30.4)	0.487
No	33 (37.1)	20 (60.6)	13 (39.4)	
Average dialysis sess		,	,	
1 - 3	34 (38.2)	19 (55.9)	15 (44.1)	0.028
4 - 6	40 (44.9)	26 (65.0)	14 (35.0)	
7 - 9	15 (16.9)	14 (93.3)	1 (6.7)	
Duration of dialysis	,	,	()	
1 - 5	56 (62.9)	39 (69.6)	17 (30.4)	0.178
6 - 10	7 (7.9)	6 (85.7)	1 (14.3)	
11 - 15	12 (13.5)	7 (58.3)	5 (41.7)	
16 - 20	7 (7.9)	2 (28.6)	5 (71.4)	
>20	7 (7.9)	5 (71.4)	2 (28.6)	
Visits to other dialys	` ,	` ,	,	
Yes	10 (11.2)	8 (80.0)	2 (20.0)	0.485
No	79 (88.8)	51 (64.6)	28 (35.4)	

Results were presented as frequency (%); Categorical variables compared using Chi-square test. Significant at P<0.05

Annals of Medical Laboratory Science (2022) **2**(1): 42 - 51 *https://www.annalsmls.org*

undergo monthly serology testing and the findings recorded in their records folders were the source of the data for viral infection history. These data were collected for each participant and recorded against their basic demographic characteristics.

Underlying cause of the ESRD was a very important class of data obtained for the purpose of this study. This information was obtained from the records entry book at the dialysis clinic. This was entered into the database created using Microsoft Office Excel. History of blood transfusion was also obtained from the record of each participant through the transfusion record slips issued by the blood bank.

Other data collected included the total duration of dialysis treatment for each participant. This was obtained from the officials at the CCTH Renal Centre. All of this information was collected for the purpose of estimating any association between these parameters and viral infection.

Data Analysis

Initial entry and organizing of data were done using Microsoft Office 2016 Excel Spreadsheet. The data entry and analyses were performed using IBM Statistical Package for Social Science (SPSS), Version 17. Descriptive statistics including total frequency and charts were used. Multinomial logistic regression was used to test the associations of the determinants. P value less than 0.05 was considered significant.

RESULTS

Table 1 shows the general characteristics of study participants. The mean age of the study participants was 41.3±13.8 years, with no significant difference in the ages of males and females (p=0.358). All characteristics were similar among all participants apart from number of dialysis sessions which was relatively high in females than in males (except 7-9 sessions which was higher in males than in females (p>0.05).

The prevalence of various infections among study participants is illustrated in Figure 1. Hepatitis B infection was prevalent in 12.4% of the participants

https://doi.org/10.51374/annalsmls.2022.2.1.0057

with HCV and HIV being present in 6.7% and 5.6% respectively. HBV and HCV coinfection was present in 5.6% of the participants.

Table 2 shows a logistic regression of factors associated with HBV infection among participants. Testing positive for HCV were significant determinants of HBV infection (p<0.001).

Table 3 shows a logistic regression of factors associated with hepatitis C infection among participants. Other demographic, clinical and biochemical characteristics were all not significant determinants of HCV infection.

Logistic regression of factors associated with HIV among participants is presented in Table 4. Participants who were married (OR=1.615), had more than 20 months duration on dialysis (OR=1.812), had 7-9 dialysis sessions per month (OR=2.308) and were also insignificantly more likely to have HIV infection (p>0.05). Demographic, biochemical and clinical characteristics were all insignificant determinants of HIV infection.

The primary cause of dialysis and type of kidney abnormality in relation to HBV, HCV and HIV positivity is presented in Table 5. The commonest primary cause of dialysis among the participants positive for Hepatitis B was hypertension (54.5%).

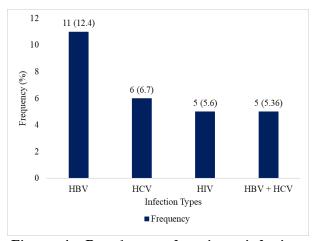


Figure 1: Prevalence of various infections among study participants

Annals of Medical Laboratory Science (2022) **2**(1): 42 - 51 *https://www.annalsmls.org*

https://doi.org/10.51374/annalsmls.2022.2.1.0057

Among the HCV positive participants, most had hypertension as primary cause.

DISCUSSION

This study estimated the prevalence rate of HBV,

HCV and HIV among ESRD patients undergoing haemodialysis at the Cape Coast Teaching Hospital. Of the 89 participants studied, the prevalence of HBV, HCV and HIV were 11(12.4%), 6(6.7%) and 5(5.6%) respectively. Majority of the ESRD patients

Table 2: Logistic regression of factors associated with Hepatitis B infection among participants Variable Hepatitis B Positive OR (95% CI) p-value Total 11 (12.4) Age (years) < 20 0.001.0 1 (3.0) 0.14 (0.00-5.04) 20-39 0.281 40-59 10 (22.2) 0.89 (0.03-23.44) 0.943 ≥60 0.16 (0.00-11.42) 0.398 0(0.0)Sex Male 9 (15.3) 2.52 (0.51-12.49) 0.260 Female 2(6.7)1.0 Occupation Unemployed 0(0.0)0.31 (0.01-8.31) 0.483 Formal 3 (30.0) 4.71 (0.41-54.84) 0.216 Informal 7 (14.9) 1.93 (0.21_17.36) 0.559 Retired 0.45 (0.02-12.49) 0(0.0)0.638Students 1 (8.3) 1.0 **Marital Status** Single 1 (4.3) 1.0 Married 4.31 (0.52_35.78) 10 (16.4) 0.176 Divorced 0(0.0)3.00 (0.09-95.18) 0.533 Widowed 0(0.0)2.14 (0.07-63.76) 0.660 **HBV** Negative 6 (7.2) † 64.17 (6.42-641.41) Positive 5 (83.3) < 0.001 HIV Non-Reactive 11 (13.1) 1.0 0.58 (0.03-11.22) 0.719 Reactive 0(0.0)History of transfusion 1.04 (0.28-3.84) Yes 7 (12.5) 0.958 No 4 (12.1) 1.0 Average sessions/month 1 - 3 6 (17.6) 1.0 4 - 6 4 (10.0) 0.52 (0.13-2.02) 0.343 7 - 9 0.33 (0.04-3.05) 1 (6.7) 0.330 Duration of dialysis treatment/month 1 - 5 8 (14.3) 1.0 6 - 10 1 (14.3) 1.00 (0.11-9.44) 1.000 11 - 15 2 (16.7) 1.20 (0.22-6.52) 0.83316 - 20 0.380 (0.02-7.30) 0(0.0)0.521 0.38 (0.02-7.30) 0(0.0)0.521 Visits to other dialysis centers 0(0.0)0.28 (0.02-5.18) Yes 0.395 11 (13.9) No 1.0

HCV: Hepatitis C Virus; HIV: Human Immunodeficiency Virus; OR: Odds Ratio; CI: Confidence Interval; †: Statistically significant association

were males 59(66%) and 39 (33.7%) were females, co-infection of HBV and HCV, represented 5.6% of the total study population and age and hepatitis C positive cases were significant determinants of HBV

infection.

Our reported prevalence of HBV and HCV is consistent with known findings from other reports.

Table 3: Logistic regression of factors associated with Hepatitis C infection among participants

Variable	Hepatitis C Positive	OR (95% CI)	p-values
Total	6 (6.7)	•	-
Age (years)	,		
<20	0 (0.0)	1.0	
20-39	1 (3.0)	0.22(0.01-7.05)	0.395
40-59	5 (11.1)	0.60 (0.03-14.28)	0.755
≥60	0 (0.0)	0.26 (0.00-16.86)	0.529
Sex	,	` ,	
Male	6 (10.2)	6.67 (0.36-122.26)	0.201
Female	0 (0.0)	1.0	
Occupation	,		
Unemployed	0 (0.0)	1.0	
Formal	2 (20.0)	5.95 (0.26-138.26)	0.266
Informal	3 (6.4)	1.84 (0.09-38.05)	0.693
Retired	0 (0.0)	1.47 (0.03-81.56)	0.851
Students	1 (8.3)	3.00 (0.11-80.96)	0.514
Marital Status	,	(/	
Single	1 (4.3)	1.0	
Married	5 (8.2)	1.89 (0.21-17.01)	0.572
Divorced	0 (0.0)	3.13 (0.10-99.30)	0.517
Widowed	0 (0.0)	2.24 (0.08-66.53)	0.642
HCV	,	` ,	
Negative	1 (1.3) †	1.0	
Positive	5 (45.5)	35.45 (3.78-332.35)	0.002
HIV	,	,	
Non-Reactive	6 (7.1)	1.0	
Reactive	0 (0.0)	1.18 (0.06-23.81)	0.913
History of transfusion	,	,	
Yes	5 (8.9)	2.95 (0.33-26.32)	0.333
No	1 (3.0)	1.0	
Average sessions/month			
1 - 3	2 (5.9)	1.0	
4 - 6	4 (10.0)	1.70 (0.29-9.86)	0.554
7 - 9	0 (0.0)	0.45 (0.02-9.83)	0.608
Duration of dialysis treatment/month	,	,	
1 - 5	4 (7.1)	1.0	
6 - 10	0 (0.0)	0.84 (0.04-17.14)	0.908
11 - 15	2 (16.7)	2.33 (0.38-14.23)	0.358
16 - 20	0 (0.0)	0.84 (0.04-17.14)	0.908
>20	0 (0.0)	0.84 (0.04-17.14)	0.908
Visits to other dialysis centers	,	,	
Yes	1 (10.0)	1.58 (0.17-14.92)	0.690
Nī.	•	,	
No	5 (6.3)	1.0	

HCV: Hepatitis C Virus; HIV: Human Immunodeficiency Virus; OR: Odds Ratio; CI: Confidence Interval; †: Statistically significant association

In our study, the prevalence of HBV among participants was 12.4% which is high compared to the 1.5% by Malhotra *et al.*, (2016) in a retrospective study report in North India demonstrated. Also,

Reddy *et al.* (2005) reported 1.4% prevalence of HBV in India. However, Malhotra *et al.*, (2016) and Alashek *et al.*, (2012) in Libya recorded 33.5% and 31.1% of their participants to be infected with

Table 4: Logistic regression of factors associated with HIV among participants

Variable	HIV - Reactive	OR (95% CI)	p-value
Total	5 (5.6)		
Age (years)	,		
<20	0 (0.0)	1.0	
20-39	1 (3.0)	0.23 (0.01-7.27)	0.405
40-59	4 (8.9)	0.54 (0.02-13.15)	0.707
≥60	0 (0.0)	0.26 (0.00-16.86)	0.529
Sex	,	,	
Male	5 (8.5)	6.16 (0.33-115.15)	0.224
Female	0 (0.0)	1.0	
Occupation	` ,		
Unemployed	0 (0.0)	1.0	
Formal	0 (0.0)	1.19 (0.02-65.32)	0.932
Informal	4 (8.5)	2.59 (0.13-51.36)	0.533
Retired	0 (0.0)	1.47 (0.03-81.56)	0.851
Students	1 (8.3)	3.26 (0.12-88.35)	0.483
Marital Status	,	,	
Single	1 (4.3)	1.0	
Married	4 (6.6)	1.54 (0.16-14.59)	0.705
Divorced	0 (0.0)	3 (0.09-95.18)	0.533
Widowed	0 (0.0)	2.14 (0.07-63.76)	0.660
HCV	,	,	
Negative	5 (6.4)	1.0	
Positive	0 (0.0)	0.58 (0.03-11.22)	0.719
HIV	,	,	
Non-Reactive	5 (6.0)	1.0	
Reactive	0 (0.0)	1.10 (0.05-22.13)	0.951
History of transfusion	,	,	
Yes	2 (3.6)	0.37 (0.06-2.34)	0.291
No	3 (9.1)	1.0	
Average sessions/month	,		
1 - 3	2 (5.9)	1.0	
4 - 6	1 (2.5)	0.410 (0.04-4.73)	0.475
7 - 9	2 (13.3)	2.46 (0.31-19.38)	0.392
Duration of dialysis treatment/month	,	,	
1 - 5	4 (7.1)	1.0	
6 - 10	0 (0.0)	0.78 (0.04-15.94)	0.870
11 - 15	0 (0.0)	0.47 (0.02-9.24)	0.617
16 - 20	0 (0.0)	0.78 (0.04-15.94)	0.870
>20	1 (14.3)	2.17 (0.221-22.67)	0.519
Visits to other dialysis centers	()	,	
Yes	0 (0.0)	0.65 (0.03-12.53)	0.772
No	5 (6.3)	1.0	

HCV: Hepatitis C Virus; HIV: Human Immunodeficiency Virus; OR: Odds Ratio; CI: Confidence Interval; †: Statistically significant association

Table 5: Primary cause of dialysis and type of kidney abnormality in relation to HBV, HCV and HIV positivity

Variable	HBV-Positive, $n = 11$	HCV-Positive, $n = 6$	HIV-Positive, $n = 5$
Primary Cause			
Renal abnormalities	2 (18.2)	1 (16.7)	-
HIV	-	-	5 (100.0)
HPT	6 (54.5)	3 (50.0)	-
DM/HPT	1 (9.1)	1 (16.7)	-
HBV	1 (9.1)	1 (16.7)	-
DM	-	-	-
Intravascular haemolysis/Sepsis	-	-	-
Obstructive uropathy	-	-	-
SCD	-	-	-
Sepsis	1 (9.1)	-	-
Severe cerebral malaria	- '	-	-
Uraemic Encephalopathy	-	-	-
Type of renal abnormality			
Unknown	4 (36.4)	1 (16.7)	3 (60.0)
AKI	1 (9.1)	- ` ` `	1 (20.0)
CGN	3 (27.3)	3 (50.0)	1 (20.0)
Glomerulosclerosis	2 (18.2)	2 (33.3)	-
Adult Polycystic kidney disease	1 (9.1)	<u>-</u>	-

HBV: Hepatitis B virus, HCV: Hepatitis C virus, HIV: Human Immunodeficiency Virus, HPT: Hypertension, DM: Diabetes mellitus, SCD: Sickle Cell Disease, AKI: Acute Kidney Injury, CGN: Chronic Glomerulonephritis.

HCV respectively which is at variance with the 6.7% we observed. These discrepancies could be as a result of different diagnostic methods employed and their degrees of sensitivity to antigens and antibodies as well as different settings, expertise of the professional performing the test and sample size. In our study, the serum of each participant was analyzed for HbsAg using a one-step HbsAg test strip and rapid anti-HCV test strip for the detection of anti-HCV antibodies. However, in the study by Reddy *et al.*, (2005), Malhotra *et al.*, (2016) and Alashek *et al.*, (2012) testing of participants' serum was done by ELISA methods.

The prevalence of HIV (5.6%) recorded in our study is high compared to the 1.15% reported in Spain (Barril et al., 2005) and the no HIV cases reported in Iraq (Ibrahim et al, 2017). Ibrahim *et al.*, (2017) attributed the no case of HIV infection to rarity of HIV infections in the region. The prevalence of HIV in our study however, is low compared to the 10.4% reported by Meremo *et al.*, (2017) in Tanzania. The disparities between these studies could be due to the

difference in prevalence of HIV infections in these countries. According to WHO, the prevalence of HIV in Iraq is currently less than 0.1% of the population whiles the Ghana AIDS commission estimates the prevalence of HIV in Ghana to be 1.18%. Also, Tanzania has an HIV prevalence of 5.1% (Mpondo *et al.*, 2017).

Coinfection is high among the chronic kidney disease (CKD) patients and this could be due to the high frequency of transfusions of blood/blood products and extracorporeal circulation during haemodialysis (Malhotra et al., 2016). The prevalence of HCV and HBV coinfection reported from this study is 5.6% which is at variance with studies of Malhotra et al., (2016), Alashek et al., (2012), Duong et al., (2015), who recorded 0.8% in North India, 1.2% in Libya and 1% in Vietnam in Southeastern Asia respectively. The varying prevalence of coinfection from the studies could have resulted from the different setting and sample size. However, there was no coinfection of all three infections (HBV, HCV, HIV), a possible reason for which

Annals of Medical Laboratory Science (2022) **2**(1): 42 - 51 *https://www.annalsmls.org*

most studies conducted failed to report on same.

Our study is limited by the small sample size as well as the use of rapid diagnostic test kits for HBV, HCV and HIV. Also, we did not assess whether the participants acquired HBV, HCV and HIV before starting haemodialysis.

CONCLUSION

Risk of being infected with HBV, HCV and HIV is high among ESRD patients undergoing haemodialysis due to frequent exposure to blood and blood products. This study highlights the need for preventive and control measures such as HbsAg vaccination of HBV negative haemodialysis patients and regular screening for those on haemodialysis to determine unit transfer of infections early and stringent screening of the blood and blood products as well as regularly assessing the liver functions of these patients.

COMPETING INTEREST

Authors declare that they have no competing interests.

REFERENCES

- Agyeman, A. A., Ofori-Asenso, R., Mprah, A., & Ashiagbor, G. (2016). Epidemiology of hepatitis C virus in Ghana: A systematic review and meta-analysis. *BMC Infectious Diseases*, 16(1). https://doi.org/10.1186/s12879-016-1708-7
- Alashek, W. A., McIntyre, C. W., & Taal, M. W. (2012). Hepatitis B and C infection in haemodialysis patients in Libya: prevalence, incidence and risk factors. *BMC Infectious Diseases*, 12, 1–8. https://doi.org/10.1186/1471-2334-12-265
- Barril, G., Trullás, J.-C., González-Parra, E., Moreno, A., Bergada, E., Jofre, R., ... Miró, J. M. (2004). [Prevalence of HIV-1-infection in dialysis units in Spain and potential candidates for renal transplantation: results of a Spanish survey]. *Enfermedades Infecciosas y Microbiologia Clinica*, 23(6), 335–339. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15970165
- Bhaumik, P., & Debnath, K. (2012). Prevalence of Hepatitis B and C among Hemodialysis

https://doi.org/10.51374/annalsmls.2022.2.1.0057

- Patients of Tripura , India. *Jp_Journals*, 10–13. https://doi.org/10.5005/jp-journals-10018-1023
- Duong, C. M., Olszyna, D. P., & McLaws, M.-L. (2015). Hepatitis B and C virus infections among patients with end stage renal disease in a low-resourced hemodialysis center in Vietnam: a cross-sectional study. *BMC Public Health*, 15(1), 192. https://doi.org/10.1186/s12889-015-1532-9
- Ghana AIDS commission (2017), National and Sub
 -National HIV and AIDS Estimates and
 Projection. http://www.ghanaids.gov.gh/
 gac1/pubs/20172022_national_and_sub%
 20natio al_Estimates_Report.pdf.
- Haroun, M. K., Jaar, B. G., Hoffman, S. C., Comstock, G. W., Klag, M. J., & Coresh, J. (2010). Risk Factors for Chronic Kidney Disease: A Prospective Study of 23, 534 Men and Women in Washington County, Maryland, 2934/2941. https://doi.org/10.1097/01.ASN.0000095249.99803.85
- Ibrahim, N. M. R., Sidiq, Z., Saleem, M., & Hussein, N. R. (2018). The Prevalence of HIV, HCV, and HBV Among Hemodialysis Patients Attending Duhok Hemodialysis Center, 5(1), 12–15. https://doi.org/10.5812/iji.63246.Research
- Kim, A. J., Lim, H. J., Ro, H., Jung, J. Y., Lee, H. H., Chung, W., & Chang, J. H. (2016). Liver cirrhosis leads to poorer survival in patients with end-stage renal disease. *The Korean Journal of Internal Medicine*, 31(4), 730–738. https://doi.org/10.3904/kjim.2014.328
- Liu, Z., & Hou, J. (2006). Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) Dual Infection. International Journal of Medical Sciences, 3(2), 57-62. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1415845/
- Malhotra, R., Soin, D., Grover, P., Galhotra, S., Khutan, H., & Kaur, N. (2016). Hepatitis B virus and hepatitis C virus co-infection in hemodialysis patients: A retrospective study from a tertiary care hospital of North India. *Journal of Natural Science, Biology and Medicine*,

- 7(1), 72. https://doi.org/10.4103/0976-9668.175076
- Meremo, A. J., Ngilangwa, D. P., Mwashambwa, M. Y., Masalu, M. B., Kapinga, J., Tagalile, R., & Sabi, I. (2017). Challenges and outcomes of haemodialysis among patients presenting with kidney diseases in Dodoma, Tanzania. *BMC Nephrology*, 18(1), 4–9. https://doi.org/10.1186/s12882-017-0634-2
- Reddy, G., Dakshinamurthy, K., Neelaprasad, P., Gangadhar, T., & Lakshmi, V. (2005). Prevalence of HBV and HCV dual infection in patients on haemodialysis. *Indian Journal of Medical Microbiology*, 23(1), 41. https://doi.org/10.4103/0255-0857.13872
- Sagnelli, E., Coppola, N., Messina, V., Di Caprio, D., Marrocco, C., Marotta, A., ... Filippini, P. (2002). HBV superinfection in hepatitis C virus chronic carriers, viral interaction, and clinical course. *Hepatology*, 36(5), 1285–1291.

- Saha D, Agarwal SK. Hepatitis and HIV infection during haemodialysis. Journal of the Indian Medical Association. 2001 Apr;99(4):194-9.
- Tannor, E. K., Awuku, Y. A., Boima, V., & Antwi, S. (2018). The geographical distribution of dialysis services in Ghana, 1–7. https://doi.org/10.1186/s41100-018-0143-1
- Mpondo, B. C., Gunda, D. W., & Kilonzo, S. B. (2017). HIV epidemic in Tanzania: the possible role of the key populations. *AIDS* research and treatment, 2017.
- Yakaryilmaz F, Alp Gurbuz O, Guliter S, Mert A, Songur Y, Karakan T, Keles H. Prevalence of occult hepatitis B and hepatitis C virus infections in Turkish hemodialysis patients. Renal failure. 2006 Jan 1;28(8):729-35.
- WHO, Regional office for Eastern Mediterranean, Iraq;HIV/AIDS http://www.emro.who.int/ http://www.emro.who.int/

