Association between Parasite Density and Cytokines in Malaria Infected Human Placenta

  • Okezie C. Okamgba Department of Medical Laboratory Science, Faculty of Medicine and Health Sciences, Abia State University, Uturu, Abia
  • Martins O. Ifeanyichukwu Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University
  • Wilson I. Nwankwo Department of Microbiology, Faculty of Biological and Physical Sciences, Abia State University, Uturu, Abia State
  • Ayodele Ilesanmi Department of Medical Laboratory Science, Kwara State University, Malate
  • Eledo Benjamin Onyema Department of Medical Laboratory Science, Madonna University, Nigeria
  • Lawrence N. Chigbu Department of Medical Laboratory Science, Faculty of Medicine and Health Sciences, Abia State University, Uturu, Abia
  • Favour C. Obiomah Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University
  • Okezie V. Ikpeazu Department of Biochemistry, Faculty of Biological and Physical Sciences, Abia State University, Uturu, Abia State
Keywords: Malaria, Cytokines, Parasite density, Human placenta, Immediate Post-partum women

Abstract

Background: Placental malaria is a major cause of infection induced adverse conditions in pregnancy and is attributed to the sequestration of malaria parasite in the intervillous space. We investigated if any relationship exists between the parasite density and cytokines in malaria parasite infected human placentas.
Methods: Sixty (60) malaria parasite infected placentas from apparently healthy immediate post-partum women and 40 malaria parasite uninfected placentas which served as control were studied. Blood from the human placenta was aseptically collected and tested for HIV and malaria parasite using standard methods. Interferon-Gamma (IFNγ), Tumor Necrosis Factor alpha (TNFα), Interleukin-4 (IL-4), Interleukin-6 (IL-6) and Interleukin-10 (IL-10) were measured by Enzyme-Linked Immunosorbent Assay (ELISA) technique. Data were analysed using appropriate statistical tools.
Results: The result revealed P. falciparum with a mean parasite density of 762.47±459.62 parasite/µl of blood. The mean±SD (11.71±6.55pg/ml) and 55.57±43.13pg/ml for IFNγ and IL-10 respectively for infected placenta was statistically higher on comparison with 5.58±2.86pg/ml and 16.60±4.88pg/ml for IFNγ and IL10 respectively for uninfected human placenta (P<0.05). Positive correlation existed between parasite density and IL-6 (r = 0.59, p = 0.001) and between parasite density and IL-10 (r =0.41, p=0.024).
Conclusion: The study showed upregulated levels of IL-6 and IL-10 which indicates disruption of normal immune balance in the parasite infected placenta and the amount of IL-6 and IL-10 secreted could reflect the level of parasitaemia and could serve for diagnostic assessment of placental malaria.

Annals of Medical Laboratory Science (2021) 1(2), 30 - 38

References

Adams, Y., Kuhnrae, P., Higgins, M. K., & Ghumra…, A. (2014). Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype Infection and https://iai.asm.org/content/82/3/949.short

Agudelo, O. M., Aristizabal, B. H., Yanow, S. K., Arango, E., Carmona-Fonseca, J., & Maestre, A. (2014). Submicroscopic infection of placenta by Plasmodium produces Th1/Th2 cytokine imbalance, inflammation and hypoxia in women from north-west Colombia. Malaria journal, 13(1), 1-10. https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-13-122

Anchang-Kimbi, J. K., Kalaji, L. N., Mbacham, H. F., Wepnje, G. B., Apinjoh, T. O., Ngole Sumbele, I. U., Dionne-Odom, J., Tita, A. T. N., & Achidi, E. A. (2020). Coverage and effectiveness of intermittent preventive treatment in pregnancy with sulfadoxinepyrimethamine (IPTp-SP) on adverse pregnancy outcomes in the Mount Cameroon area, South West Cameroon. Malar J, 19(1),100. https://doi.org/10.1186/s12936-020-03155-2

Anto, F., Agongo, I. H., Asoala, V., Awini, E., & Oduro, A. R. (2019). Intermittent preventive treatment of malaria in pregnancy: assessment of the sulfadoxine-pyrimethamine three-dose policy on birth outcomes in rural Northern Ghana. Journal of tropical medicine, 2019. https://www.hindawi.com/journals/jtm/2019/6712685/abs

Ayres Pereira, M., Mandel Clausen, T., Pehrson, C., Mao, Y., Resende, M., Daugaard, M., Riis Kristensen, A., Spliid, C., Mathiesen, L., E Knudsen, L., Damm, P., G Theander, T., R Hansson, S., A Nielsen, M., & Salanti, A. (2016). Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog, 12(8), e1005831. https://doi.org/10.1371/journal.ppat.1005831

Bayoumi, N. K., Bakhet, K. H., Mohmmed, A. A., Eltom, A. M., Elbashir, M. I., Mavoungou, E., & Adam, I. (2009). Cytokine profiles in peripheral, placental and cord blood in an area of unstable malaria transmission in eastern Sudan. Journal of tropical pediatrics, 55(4), 233-237. https://academic.oup.com/tropej/article/55/4/233/1672575

Bronson, S. L., & Bale, T. L. (2016). The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology, 41(1), 207-218. https://www.nature.com/articles/npp2015231

Chan, J. A., Fowkes, F. J. I., & Beeson, J. G. (2014). Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cellular and Molecular Life Sciences. https://link.springer.com/article/10.1007/s00018-014-1614-3

Choy, E., & Rose-John, S. (2017). Interleukin-6 as a Multifunctional Regulator: Inflammation, Immune Response, and Fibrosis. Journal of Scleroderma and Related Disorders, 2(2_suppl), S1-S5. https://doi.org/10.5301/jsrd.5000265

Djontu, J. C., Siewe Siewe, S., Mpeke Edene, Y. D., Nana, B. C., Chomga Foko, E. V., Bigoga, J. D., Leke, R. F., & Megnekou, R. (2016). Impact of placental Plasmodium falciparum malaria infection on the Cameroonian maternal and neonate’s plasma levels of some cytokines known to regulate T cells differentiation and function. Malar J, 15(1), 561. https://doi.org/10.1186/s12936-016-1611-0

Dörpinghaus, M., Fürstenwerth, F., Roth, L. K., Bouws, P., Rakotonirinalalao, M., Jordan, V., Sauer, M., Rehn, T., Pansegrau, E., Höhn, K., Mesén-Ramírez, P., Bachmann, A., Lorenzen, S., Roeder, T., Metwally, N. G., & Bruchhaus I. (2020). Stringent Selection of Knobby Plasmodiuu falciparum Infected Erythrocytes during Cytoadhesion at Febrile Temperature. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020174

Ezeigbo, O. R., Ibegbulem, Z., & Kalu, S. (2014). Malaria parasitaemia in children aged 1-5years in Aba, South Eastern Nigeria. International Journal of Infectious Diseases, 21,165. https://doi.org/10.1016j.ijid.2014.03.766

Fried, M., & Duffy, P. E. (2015). Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine, 33(52), 7483-7488. https://doi.org/10.1016/j.vaccine.2015.10.011

Lima, F. A., Barateiro, A., Dombrowski, J. G., de Souza, R. M., Costa, D. S., Murillo, O., Epiphanio, S., Gonçalves, L. A., & Marinho, C. R. F. (2019). Plasmodium falciparum infection dysregulates placental autophagy. PLoS One, 14(12), e0226117. https://doi.org/10.1371/journal.pone.0226117

Lufele, E., Umbers, A., Ordi, J., Ome-Kaius, M., Wangnapi, R., Unger, H., Tarongka, N., Siba, P., Mueller, I., Robinson, L., & Rogerson, S. (2017). Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women. Malar J, 16(1), 427. https://doi.org/10.1186/s12936-017-2077-4

Maestre, A., & Carmona-Fonseca, J. (2014). Immune responses during gestational malaria: a review of the current knowledge and future trend of research. J Infect Dev Ctries, 8(4), 391-402. https://doi.org/10.3855/jidc.3777

Monin, L., & Gaffen, S. L. (2018). Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol, 10 (4). https://doi.org/10.1101cshperspect.a028522

Morelli, S., Mandal, M., Goldsmith, L. T., Kashani, B. N., & Ponzio, N. M. (2015). The maternal immune system during pregnancy and its influence on fetal development. Research and Reports in Biology, 171. https://doi.org/10.2147/rrb.s80652

Ndam, N. T., Denoeud-Ndam, L., Doritchamou, J., Viwami, F., Salanti, A., Nielsen, M. A., Fievet, N., Massougbodji, A., Luty, A. J. F., & Deloron, P. (2015). Protective Antibodies against Placental Malaria and Poor Outcomes during Pregnancy, Benin. Emerging Infectious Diseases, 21(5), 813-823. https://doi.org/10.3201/eid2105.141626

Okamgba, O. C., Ifeanyichukwu, M., Ilesanmi, A., & Chigbu, L. (2018). Variations in the leukocyte and cytokine profiles between placental and maternal circulation in pregnancy-associated malaria. Research and Reports in Tropical Medicine, Volume 9, 1-8. https://doi.org/10.2147/rrtm.s137829

Omer, S. A., Idress, H. E., Adam, I., Abdelrahim, M., Noureldein, A. N., Abdelrazig, A. M., Elhassan, M. O., & Sulaiman, S. M. (2017). Placental malaria and its effect on pregnancy outcomes in Sudanese women from Blue Nile State. Malar J, 16(1), 374. https://doi.org/10.1186/s12936-017-2028-0

Pehrson, C., Mathiesen, L., Heno, K. K., Salanti, A., Resende, M., Dzikowski, R., Damm, P., Hansson, S. R., King, C. L., Schneider, H., Wang, C. W., Lavstsen, T., Theander, T. G., Knudsen, L. E., & Nielsen, M. A. (2016). Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue: a novel model of placental malaria. Malar J, 15(1), 292. https://doi.org/10.1186/s12936-016-1342-2

Rieger, H., Yoshikawa, H. Y., Quadt, K., Nielsen, M. A., Sanchez, C. P., Salanti, A., Tanaka, M., & Lanzer, M. (2015). Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood, 125(2), 383-391. https://doi.org/10.1182/blood-2014-03-561019

Seitz, J., Morales-Prieto, D. M., Favaro, R. R., Schneider, H., & Markert, U. R. (2019). Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne), 10, 98. https://doi.org/10.3389/fendo.2019.00098

Sharma, L., & Shukla, G. (2017). Placental Malaria: A New Insight into the Pathophysiology. Front Med (Lausanne), 4, 117. https://doi.org/10.3389/fmed.2017.00117

Sylvester, B., Gasarasi, D. B., Aboud, S., Tarimo, D., Masawe, S., Mpembeni, R., & Swedberg, G. (2018). Interferon-γ and Interleukin-10 Responses during Clinical Malaria Episodes in Infants Aged 0-2 Years Prenatally Exposed to Plasmodium falciparum: Tanzanian Birth Cohort. J Trop Med, 2018, 6847498.
https://doi.org/10.1155/2018/6847498

Yasnot, M. F., Perkins, D. J., Corredor, M., Yanow, S., Carmona-Fonseca, J., & Maestre, A. (2013). The Effects of Plasmodium vivax Gestational Malaria on the Clinical and Immune Status of Pregnant Women in Northwestern Colombia. Colomb Med (Cali), 44(3), 172-177.

Yockey, L. J., & Iwasaki, A. (2018). Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity, 49(3), 397-412. https://doi.org/10.1016/j.immuni.2018.07.017
Published
2021-06-20
How to Cite
Okamgba, O. C., Ifeanyichukwu, M. O., Nwankwo, W. I., Ilesanmi, A., Onyema, E. B., Chigbu, L. N., Obiomah, F. C., & Ikpeazu, O. V. (2021). Association between Parasite Density and Cytokines in Malaria Infected Human Placenta. Annals of Medical Laboratory Science, 1(2), 30-38. https://doi.org/10.51374/annalsmls.2021.1.2.0040
Section
Articles

Most read articles by the same author(s)