Association between Parasite Density and Cytokines in Malaria Infected Human Placenta
Abstract
Background: Placental malaria is a major cause of infection induced adverse conditions in pregnancy and is attributed to the sequestration of malaria parasite in the intervillous space. We investigated if any relationship exists between the parasite density and cytokines in malaria parasite infected human placentas.
Methods: Sixty (60) malaria parasite infected placentas from apparently healthy immediate post-partum women and 40 malaria parasite uninfected placentas which served as control were studied. Blood from the human placenta was aseptically collected and tested for HIV and malaria parasite using standard methods. Interferon-Gamma (IFNγ), Tumor Necrosis Factor alpha (TNFα), Interleukin-4 (IL-4), Interleukin-6 (IL-6) and Interleukin-10 (IL-10) were measured by Enzyme-Linked Immunosorbent Assay (ELISA) technique. Data were analysed using appropriate statistical tools.
Results: The result revealed P. falciparum with a mean parasite density of 762.47±459.62 parasite/µl of blood. The mean±SD (11.71±6.55pg/ml) and 55.57±43.13pg/ml for IFNγ and IL-10 respectively for infected placenta was statistically higher on comparison with 5.58±2.86pg/ml and 16.60±4.88pg/ml for IFNγ and IL10 respectively for uninfected human placenta (P<0.05). Positive correlation existed between parasite density and IL-6 (r = 0.59, p = 0.001) and between parasite density and IL-10 (r =0.41, p=0.024).
Conclusion: The study showed upregulated levels of IL-6 and IL-10 which indicates disruption of normal immune balance in the parasite infected placenta and the amount of IL-6 and IL-10 secreted could reflect the level of parasitaemia and could serve for diagnostic assessment of placental malaria.
Annals of Medical Laboratory Science (2021) 1(2), 30 - 38
References
Agudelo, O. M., Aristizabal, B. H., Yanow, S. K., Arango, E., Carmona-Fonseca, J., & Maestre, A. (2014). Submicroscopic infection of placenta by Plasmodium produces Th1/Th2 cytokine imbalance, inflammation and hypoxia in women from north-west Colombia. Malaria journal, 13(1), 1-10. https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-13-122
Anchang-Kimbi, J. K., Kalaji, L. N., Mbacham, H. F., Wepnje, G. B., Apinjoh, T. O., Ngole Sumbele, I. U., Dionne-Odom, J., Tita, A. T. N., & Achidi, E. A. (2020). Coverage and effectiveness of intermittent preventive treatment in pregnancy with sulfadoxinepyrimethamine (IPTp-SP) on adverse pregnancy outcomes in the Mount Cameroon area, South West Cameroon. Malar J, 19(1),100. https://doi.org/10.1186/s12936-020-03155-2
Anto, F., Agongo, I. H., Asoala, V., Awini, E., & Oduro, A. R. (2019). Intermittent preventive treatment of malaria in pregnancy: assessment of the sulfadoxine-pyrimethamine three-dose policy on birth outcomes in rural Northern Ghana. Journal of tropical medicine, 2019. https://www.hindawi.com/journals/jtm/2019/6712685/abs
Ayres Pereira, M., Mandel Clausen, T., Pehrson, C., Mao, Y., Resende, M., Daugaard, M., Riis Kristensen, A., Spliid, C., Mathiesen, L., E Knudsen, L., Damm, P., G Theander, T., R Hansson, S., A Nielsen, M., & Salanti, A. (2016). Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog, 12(8), e1005831. https://doi.org/10.1371/journal.ppat.1005831
Bayoumi, N. K., Bakhet, K. H., Mohmmed, A. A., Eltom, A. M., Elbashir, M. I., Mavoungou, E., & Adam, I. (2009). Cytokine profiles in peripheral, placental and cord blood in an area of unstable malaria transmission in eastern Sudan. Journal of tropical pediatrics, 55(4), 233-237. https://academic.oup.com/tropej/article/55/4/233/1672575
Bronson, S. L., & Bale, T. L. (2016). The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology, 41(1), 207-218. https://www.nature.com/articles/npp2015231
Chan, J. A., Fowkes, F. J. I., & Beeson, J. G. (2014). Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cellular and Molecular Life Sciences. https://link.springer.com/article/10.1007/s00018-014-1614-3
Choy, E., & Rose-John, S. (2017). Interleukin-6 as a Multifunctional Regulator: Inflammation, Immune Response, and Fibrosis. Journal of Scleroderma and Related Disorders, 2(2_suppl), S1-S5. https://doi.org/10.5301/jsrd.5000265
Djontu, J. C., Siewe Siewe, S., Mpeke Edene, Y. D., Nana, B. C., Chomga Foko, E. V., Bigoga, J. D., Leke, R. F., & Megnekou, R. (2016). Impact of placental Plasmodium falciparum malaria infection on the Cameroonian maternal and neonate’s plasma levels of some cytokines known to regulate T cells differentiation and function. Malar J, 15(1), 561. https://doi.org/10.1186/s12936-016-1611-0
Dörpinghaus, M., Fürstenwerth, F., Roth, L. K., Bouws, P., Rakotonirinalalao, M., Jordan, V., Sauer, M., Rehn, T., Pansegrau, E., Höhn, K., Mesén-Ramírez, P., Bachmann, A., Lorenzen, S., Roeder, T., Metwally, N. G., & Bruchhaus I. (2020). Stringent Selection of Knobby Plasmodiuu falciparum Infected Erythrocytes during Cytoadhesion at Febrile Temperature. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020174
Ezeigbo, O. R., Ibegbulem, Z., & Kalu, S. (2014). Malaria parasitaemia in children aged 1-5years in Aba, South Eastern Nigeria. International Journal of Infectious Diseases, 21,165. https://doi.org/10.1016j.ijid.2014.03.766
Fried, M., & Duffy, P. E. (2015). Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine, 33(52), 7483-7488. https://doi.org/10.1016/j.vaccine.2015.10.011
Lima, F. A., Barateiro, A., Dombrowski, J. G., de Souza, R. M., Costa, D. S., Murillo, O., Epiphanio, S., Gonçalves, L. A., & Marinho, C. R. F. (2019). Plasmodium falciparum infection dysregulates placental autophagy. PLoS One, 14(12), e0226117. https://doi.org/10.1371/journal.pone.0226117
Lufele, E., Umbers, A., Ordi, J., Ome-Kaius, M., Wangnapi, R., Unger, H., Tarongka, N., Siba, P., Mueller, I., Robinson, L., & Rogerson, S. (2017). Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women. Malar J, 16(1), 427. https://doi.org/10.1186/s12936-017-2077-4
Maestre, A., & Carmona-Fonseca, J. (2014). Immune responses during gestational malaria: a review of the current knowledge and future trend of research. J Infect Dev Ctries, 8(4), 391-402. https://doi.org/10.3855/jidc.3777
Monin, L., & Gaffen, S. L. (2018). Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol, 10 (4). https://doi.org/10.1101cshperspect.a028522
Morelli, S., Mandal, M., Goldsmith, L. T., Kashani, B. N., & Ponzio, N. M. (2015). The maternal immune system during pregnancy and its influence on fetal development. Research and Reports in Biology, 171. https://doi.org/10.2147/rrb.s80652
Ndam, N. T., Denoeud-Ndam, L., Doritchamou, J., Viwami, F., Salanti, A., Nielsen, M. A., Fievet, N., Massougbodji, A., Luty, A. J. F., & Deloron, P. (2015). Protective Antibodies against Placental Malaria and Poor Outcomes during Pregnancy, Benin. Emerging Infectious Diseases, 21(5), 813-823. https://doi.org/10.3201/eid2105.141626
Okamgba, O. C., Ifeanyichukwu, M., Ilesanmi, A., & Chigbu, L. (2018). Variations in the leukocyte and cytokine profiles between placental and maternal circulation in pregnancy-associated malaria. Research and Reports in Tropical Medicine, Volume 9, 1-8. https://doi.org/10.2147/rrtm.s137829
Omer, S. A., Idress, H. E., Adam, I., Abdelrahim, M., Noureldein, A. N., Abdelrazig, A. M., Elhassan, M. O., & Sulaiman, S. M. (2017). Placental malaria and its effect on pregnancy outcomes in Sudanese women from Blue Nile State. Malar J, 16(1), 374. https://doi.org/10.1186/s12936-017-2028-0
Pehrson, C., Mathiesen, L., Heno, K. K., Salanti, A., Resende, M., Dzikowski, R., Damm, P., Hansson, S. R., King, C. L., Schneider, H., Wang, C. W., Lavstsen, T., Theander, T. G., Knudsen, L. E., & Nielsen, M. A. (2016). Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue: a novel model of placental malaria. Malar J, 15(1), 292. https://doi.org/10.1186/s12936-016-1342-2
Rieger, H., Yoshikawa, H. Y., Quadt, K., Nielsen, M. A., Sanchez, C. P., Salanti, A., Tanaka, M., & Lanzer, M. (2015). Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood, 125(2), 383-391. https://doi.org/10.1182/blood-2014-03-561019
Seitz, J., Morales-Prieto, D. M., Favaro, R. R., Schneider, H., & Markert, U. R. (2019). Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne), 10, 98. https://doi.org/10.3389/fendo.2019.00098
Sharma, L., & Shukla, G. (2017). Placental Malaria: A New Insight into the Pathophysiology. Front Med (Lausanne), 4, 117. https://doi.org/10.3389/fmed.2017.00117
Sylvester, B., Gasarasi, D. B., Aboud, S., Tarimo, D., Masawe, S., Mpembeni, R., & Swedberg, G. (2018). Interferon-γ and Interleukin-10 Responses during Clinical Malaria Episodes in Infants Aged 0-2 Years Prenatally Exposed to Plasmodium falciparum: Tanzanian Birth Cohort. J Trop Med, 2018, 6847498.
https://doi.org/10.1155/2018/6847498
Yasnot, M. F., Perkins, D. J., Corredor, M., Yanow, S., Carmona-Fonseca, J., & Maestre, A. (2013). The Effects of Plasmodium vivax Gestational Malaria on the Clinical and Immune Status of Pregnant Women in Northwestern Colombia. Colomb Med (Cali), 44(3), 172-177.
Yockey, L. J., & Iwasaki, A. (2018). Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity, 49(3), 397-412. https://doi.org/10.1016/j.immuni.2018.07.017
As AMLS is an international Open Access magazine, all the articles published under this journal will be accessible to all internet users throughout the world without any barrier of access under the terms of the Creative Commons Attribution License. The copyright of a submitted article is only transferred to the publishers if and when the article is accepted for publication.